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Introduction

In wide range of subjects, we are dealing with problem of making inferences about a
hidden state of dynamical stochastic system using only noisy observations provided
by the system. This framework occurs for instance in �nance [14], signal processing
[8], or control theory [26]. Due to the system dynamics, we would like to make
inferences sequentially every time where a measurement is received. In this case, a
recursive �lter is a convenient solution. A recursive �ltering approach means that
received data can be processed sequentially rather than as a batch so that it is
not necessary to store the complete data set nor to reprocess existing data if a new
measurement becomes available. Process of estimation is usually done in two stages:
prediction and update. In prediction stage the estimate available in current time
is propagated using the system model and the observation model. The estimate is
then updated through Bayes rule by comparing predicted and measured values.

If the system is linear with Gaussian noise, the optimal solution for state estima-
tion can be computed analytically by so called Kalman �lter [17]. In more general
cases, the optimal solution can not be computed in closed for thus some approxi-
mation technique have to be used. For example extended Kalman �lter uses local
linearization. Nonetheless, in highly nonlinear cases, the linearization is not appro-
priate approximation and consequently the estimates based on linearization tech-
nique may be inaccurate. This disadvantage can be reduced for example by using
so called unscented transformation which is an approach of unscented Kalman �l-
ter [15]. However Kalman �lter and all its derivatives are based on Gaussian noise
assumption and the provided �ltering density is also Gaussian.

Another approach is in so called particle �lters. Particle �lters belongs to the class
of simulation �lters which recursively approximate the �ltering distribution by the
cloud of points or `particles' with point mass distribution. This is a principle of
sequential Monte Carlo methods. Main advantage of particle �lters is that they are
not based on any assumption on linearity of the system or Gaussian distributions,
so they can be used in variety of application where standard approach based on
Kalman �lter su�ers.

The topic of this research project lies in the parameter estimation using particle
�lters and particularly in its application in problematics of optimal control under
uncertainty. The problem of optimal control is formulated in the �rst chapter show-
ing that it consist of two subproblems: 1) to estimate uncertain parameters of the
system which is to be controlled and 2) to make a decision which results in desired
system behavior. The estimation problem is the subject of the second chapter while
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the third chapter deals with the problem of decision making under uncertainty. Com-
parison of presented estimation techniques includes the fourth chapter. Comparison
schemes are focused on di�erent results of particle �lters and Kalman �lter based
methods. It is assumed that particle �lters will be more accurate in highly nonlinear
situations and in scenarios where Gaussian approximation is far from reality.
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Chapter 1

Optimal control problem

In both technical applications and real life, we are tended to making decisions which
should be based on knowledge about system of interest. If we would like to control
system successfully, we are dealing with two subproblems: 1) to observe the system
and 2) to design control action (based on our knowledge) which leads to desired
system behavior. However, these two subproblems are often in con�ict - the most
knowledge about system is obtained when its behavior is unexpected. Moreover, in
practice, due to the presence of noise, our knowledge will not be ever absolute.

This chapter aims to a mathematical formulation of optimal control problem. The
problem is then decomposed into �ltering and decision making which are discussed
in later chapters.

1.1 Problem formulation

In control theory [2], it is convention to describe a dynamical system by means of a
time discrete state-space model. We consider a Markovian state-space model given
by

xt = ft(xt−1, ut−1) + wt−1 t ≥ 1, (1.1)

where t is time index, xt ∈ Rnx is the state of the system, ut ∈ Ut ⊂ Rnu is the control
action , wt ∈ Rnw is i.i.d. random variable and ft : Rnx × Rnu → Rnx are arbitrary
known functions. Initial state x0 is assumed to be distributed according to some
prior density p(x0). Information about the system are provided by an observation

yt = ht(xt) + vt t ≥ 0, (1.2)

here yt ∈ Rny is the observation, vt ∈ Rnv is i.i.d. random variable and ht : Rny ×
Rnv → Rny are arbitrary known functions.

Suppose, that we are interested in system control within control horizon 0 : n.
Then, the aim is to design control sequence u0:n−1, which will lead to desired system
behavior. For determination how accurate is some proposed control sequence, a
known real function g(x1:n, u0:n−1), called loss function, is adopted.
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Due to the noise presence and fact that we can observe only yt, the loss function
can not be evaluated directly, thus we are interested in its expectation

J = E{g(x1:n, u0:n−1)}. (1.3)

Finally, the problem of optimal control is to minimize the expectation loss (1.3) with
respect to u0:n−1 ∈ U0:n−1.

1.1.1 Sequential parameter estimation

According to the system (1.1) and observation (1.2), the model can be viewed as
hidden Markov model described by (without any loss of generality we omit the
dependence on ut)

p(xt|xt−1) t ≥ 0, (1.4)

p(yt|xt) t ≥ 0, (1.5)

where we denote p(x0) := p(x0|x−1) for notation convenience.

The aim of the estimation in time t is to compute p(x0:t|y0:t) and expectation

E{gt} =

∫
gt(x0:t)p(x0:t|y0:t)dx0:t (1.6)

for any p(x0:t|y0:t) integrable function gt : R(t+1)×nx → R. Particullarly, we will be
interested in computation of marginal p(xt|y0:t).

1.1.2 Decision making

Generally, the decision making can be done in two di�erent ways. At �rst, whole
action sequence can be computed before simulation and during simulations there is
no gain from feedback of the system (open-loop control). This o�-line approach, is
reasonable only in cases where measurement is not available or is very unreliable.
This case is o� our interest.

In closed-loop approach, the control actions are computed on-line. It means, that
ut−1 is computed based on current estimate of xt−1 which is sequentially update
using measurement yt. This situation is schematically depicted in the �gure 1.1.
For closed-loop control it is necessary to have some parametric formula for control
action. This parametric formula is usually computed o�-line and only evaluation
using speci�c values is performed on-line. Particularly in time-critical applications
it is necessary to be able evaluate control actions e�ectively.

Of course, control sequence proposed by any parametric formula along control hori-
zon should minimize the expectation loss (1.3). Even if we be able to compute
expectation loss for every u0:t−1 ∈ U0:t−1, direct minimization over action space
U0:t−1 will be impossible already for very simple problems. Due to this complica-
tions, many approximation techniques or problem speci�cations have been proposed,
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regulator estimator
p̂(xt)

system
xt−1 xt

ut−1 yt

Figure 1.1: Close-loop control.

some general approaches are presented in corresponding chapter. Using an approx-
imation of optimal control, it is often crucial to use closed-loop control because we
can evaluate how the proposed control action leads to the desired state and possibly
tune the parametric formula to be more e�ective. On this very simple (but powerful)
idea is based e.g. PID regulator [16].
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Chapter 2

Sequential parameter estimation

In this chapter, we present general framework for sequential parameter estimation.
The main interest lies in sequential Monte Carlo approach. For later comparison,
Kalman �lter based techniques are also brie�y presented.

2.1 Parametr estimation with perfect Monte Carlo

simulation

Before we induce the sequential Monte Carlo, we brie�y introduce a traditional
Monte Carlo method. Suppose, that the aim is to estimate the expectation for
function gt : R(n+1)×nx → R

E{gt} =

∫
gt(x0:t)p(x0:t|y0:t)dx0:t (2.1)

The idea of perfect Monte Carlo is to approximate density p(x0:t|y0:t) by an empirical
estimate

p̂(x0:t|y0:t) =
1

N

N∑
i=1

δ(x0:t − x(i)
0:t), (2.2)

where {x(i)
0:t}Ni=1 are random samples drawn from density p(x0:t|y0:t) and δ is the Dirac

delta function. A Monte Carlo estimate is obtained by substituting the approxima-
tion (2.2) into (2.1), thus

E{gt} ≈ Ê{gt} =

∫
gt(x0:t)p̂(dx0:t|y0:t)dx0:t =

1

N

N∑
i=1

gt(x
(i)
0:t). (2.3)

Due to the strong law of large numbers, Ê(gt) converges to E(gt) almost surely and,
if the variance σ of gt(x0:t) is �nite, a central limit theorems holds

√
N(Ê(gt)− E(gt))→ N (0, σ2) if N →∞. (2.4)

The major problem of this approach is the assumption that we can sample from
density p(x0:t|y0:t).
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Figure 2.1: Using the IS, the original density p(x0:t|y0:t) is approximated by

p̂(x0:t|y0:t) which is realizated by weighted samples {x(i)
0:t}Ni=1 drawn from importance

density q(x0:t|y0:t). Here, 10000 samples is used.

2.2 Importance Sampling (IS)

Another approximation of expectation (2.1) can be done using Importance Sampling
method [11]. Unlike previous method, the IS works even if we ca not sample from
density p(x0:n|y0:n). The idea of the IS is to use a well known density q(x0:n|y0:n),
so called importance distribution, instead of p(x0:n|y0:n), see �gure 2.1. If support
of q(x0:n|y0:n) includes support of p(x0:n|y0:n) the expectation can be expressed as

E{gt} =

∫
gt(x0:t)p(x0:t|y0:t)dx0:t =

∫
gt(x0:n)ω(x0:t)q(x0:t|y0:t)dx0:t∫

ω(x0:t)q(x0:t|y0:t)dx0:t

, (2.5)

where importance weighs ω(x0:t) are de�ned as

ω(x0:t) =
p(x0:t|y0:t)

q(x0:t|y0:t)
. (2.6)

The Monte Carlo estimate can be obtained by using random samples {x(i)
0:t}Ni=1 drawn

from importance density q(x0:t|y0:t) in (2.5)

Ê(gt) =
1
N

∑N
i=1 gt(x

(i)
0:t)ω

(i)
t

1
N

∑N
i=1 ω

(i)
t

=
N∑
i=1

gt(x
(i)
0:t)ω̃

(i)
t , (2.7)

where the normalized importance weighs ω̃
(i)
t are

ω̃
(i)
t =

ω
(i)
t∑N

i=1 ω
(i)
t

=
ω(x

(i)
0:t)∑N

i=1 ω(x
(i)
0:t)

(2.8)
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Again, due to the strong law of large numbers, the estimate p̂(dx0:t|y0:t) based on

q̂(dx0:t|y0:t) and {ω̃(i)
t }Ni=1 converges to the true posterior density p(dx0:t|y0:t) if N

tends to in�nity, and thus even estimated expectation Ê(gt) converges to the E(gt).

Disadvantage of this approach is that we need to evaluate p(x
(i)
0:t|y0:t) and the impor-

tance weights have to be recomputed over the entire state sequence. Consequently,
computational complexity increases in time.

2.3 Sequential Importance Sampling (SIS)

For p(x0:t|y0:t) can be derived

p(x0:t|y0:t) =
p(yt|x0:t, y0:t−1)p(x0:t|y0:t−1)

p(yt|y0:t−1)

=
p(yt|x0:t, y0:t−1)p(x0:t|y0:t−1)

p(yt|y0:t−1)

=
p(yt|x0:t, y0:t−1)p(xt|x0:t−1, y0:t−1)p(x0:t−1|y0:t−1)

p(yt|y0:t−1)

=
p(yt|xt)p(xt|xt−1)p(x0:t−1|y0:t−1)

p(yt|y0:t−1)
,

where the �rst two equalities follow from Bayesian rule, the third from de�nition
of conditional distribution, and the last one from Markovian property. Thus, the
density satis�es a recursive formula

p(x0:t|y0:t) ∝ p(yt|xt)p(xt|xt−1)p(x0:t−1|y0:t−1). (2.9)

For derivation a recursive formula for importance weights, it is suitable to have an
importance density which satis�es

q(x0:t|y0:t) = q(xt|x0:t−1, y0:t−1)q(x0:t−1|y0:t−1). (2.10)

In this particular case, the x
(i)
0:t is formed as x

(i)
0:t = (x

(i)
0:t−1, x

(i)
t ), where x

(i)
t is drawn

from q(xt|x(i)
0:t−1, y0:t−1). The importance weights for every x

(i)
0:t can be computed

sequentially as

ω
(i)
t ∝ ω

(i)
t−1

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1, y0:t−1)

, (2.11)

see scheme 1. The approximation Ê(gt) of the expectation E(gt) can be computed
according to (2.7).

The advantage of using SIS is that we have to sample only only x
(i)
t instead of whole

x
(i)
0:t and we do not have to evaluate p(x

(i)
0:t|y0:t) .

2.4 Degeneracy of SIS

For good performance of SIS, it is suitable to have the importance function q(x0:t|y0:t)
close to the true posterior distribution p(x0:t|y0:t). However, as can be seen from
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Algorithm 1 Sequential Importance Sampling
for t = 1, 2, . . . do
for i = 1 to N do

sample x
(i)
t from q(xt|x(i)

0:t−1, y0:t−1)

set x
(i)
0:t = (x

(i)
0:t−1, x

(i)
t )

end for

for i = 1 to t do
compute importance weights using recursive formula

ω
(i)
t = ω

(i)
t−1

p(yt|xt)p(xt|xt−1)

q(xt|x0:t−1, y0:t−1)

end for

for i = 1 to N do

normalize importance weights

ω̃
(i)
t =

ω
(i)
t∑N

i=1 ω
(i)
t

end for

end for

following proposition, the variance of importance weights can only increase over
time.

Proposition 1. The variance of importance weights with both x0:t−1 y0:t interpreted
as random variables increases over time.

Proof. [21]

The variance of importance weights can be reduced by using proper importance
density. The optimal one is stated in next proposition.

Proposition 2. The importance density which minimizes the variance of the impor-
tance weight ω

(i)
t conditional upon x

(i)
0:t−1 and x

(i)
0:t−1 is q(xt|x0:t−1, y0:t) = p(xt|xt−1, yt)

Proof. [7]

Using the optimal density in (2.11), the updating procedure for weights will have

the form ω
(i)
t = ω

(i)
t−1p(yt|x

(i)
t−1). However the optimal density has two major draw-

backs: 1) it requires the ability of sampling from p(xt|xt−1, yt), and 2) to calculate

p(yt|x(i)
t−1).The second term can be principally evaluated using Chapman¤»�Kolmogorov

equation which, due to Markov property, has the form

p(yt|x(i)
t−1) =

∫
p(yt, xt|x(i)

t−1)dxt =

∫
p(yt|xt, xt−1)p(xt|x(i)

t−1)dxt =

=

∫
p(yt|xt)p(xt|x(i)

t−1)dxt.
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Figure 2.2: Using the SIS, the particles are updated by the system equation and
weighted with respect to the observation. The left part shows estimated state xt in
particular time, darker color means higher probability. True state is marked by blue
line. All the particles in the corresponding times are depicted in the right part. Due
to the degeneracy phenomenon, importance weights of majority of particles tend to
zero. Horizon of simulation and the number of particles is 50.

Both p(xt|xt−1, yt) and p(yt|x(i)
t−1) can be calculated for nonlinear system with linear

observation and Gaussian noise, see [7]. However in general case it is not possible
and some approximation have to be used. Suitable choice can be e.g. usage of local
linearization [7] or prior distribution [24]. This topic, crucial to limit the degeneracy,
is discussed in respective chapter on examples.

In practice, after few iteration, major of the normalized importance weights are
close to zero due to SIS degeneracy, see �gure 2.2. Consequently, the major of
computation e�ort is devoted ine�ciently to trajectories whose probability is almost
zero. Furthermore, any inferences based on these samples will be inaccurate. To
overcome this drawback, the resampling procedure is used.

2.5 Resampling

The idea of the resampling procedure is to eliminate particles with small normalized
weights and to use copies of the others. In other words, the resampling step produces
new particles {x∗(i)0:t }Ni=1 and corresponding weights {ω̃∗(i)t }Ni=1 based on {x(i)

0:t}Ni=1 and

{ω̃(i)
t }Ni=1. In which way, the new particles are produced, it dependes on used resam-

pling scheme, see [5] and [13] for overview. All resampling procedures discussed be-

low use ω̃
∗(i)
t = 1/N , for ilustration example see �gure 2.3. Due to x

(i)
0:t = (x

(i)
0:t−1, x

(i)
t ),

the resampling procedure is performed only with respect to x
(i)
t . Remaining part

x
∗(i)
0:t−1 is used accordingly to x

∗(i)
t .

2.5.1 Multinomial resampling

Multinomial resampling, discussed in [24], uses {x∗(i)t }Ni=1 drawn from point mass

distribution
∑N

i=1 ω̃
(i)
t δ(xt − x

(i)
t ) where δ is the Dirac delta function. Practical

implementation of multinomial resampling uses samples drawn from uniform dis-
tribution U((0; 1]) which determines N (i), the numbers of identical copies of the
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original sample x
(i)
0:t. Multinomial resampling is summarized in scheme 2.

Algorithm 2 Multinomial resampling
for i = 1 to N do

compute the cumulative weights ω̂
(i)
t =

∑i
j=1 ω̃

(j)
t

end for

for i = 1 to N do

sample U i from uniform distribution U((0; 1])
end for

order {U (i)}Ni=1 in ascending order
for i = 1 to N do

compute N (i) satis�es
∑i

j=1N
(j) = max0≥l≥N{l|ω̂(i)

t > U (i)}
end for

for i = 1 to N do

for j = i to i− 1 +N (i) do

state x
∗(i+j)
0:t =x

(i)
0:t

end for

end for

2.5.2 Residual resampling

In residual resampling [12], the number of identical copies for the original sample

x
(i)
0:t is set to Ñ (i) = bNω̃(i)

t c for each i. The rest N −
∑N

j=1 Ñ
(j) particles has

to be computed using any other resampling scheme. For example by multinomial
resampling for weights

ω̄
(i)
t =

ω̂(i)N − Ñ (i)

N −
∑N

j=1 Ñ
(j)

i = 1, . . . , N. (2.12)

Another possible choice for second step of residual resampling is to use one additional
copy for �rst N−

∑N
j=1 Ñ

(j) particles ordered according to Ni−Ñ (i). By this choice,
we obtain completely deterministic version of resampling procedure.

Residual resampling proceeds according to the scheme 3.

It can be shown (e.g. [5]) that the conditional variance of residual sampling is always
smaller than that of multinomial sampling.

2.5.3 Systematic resampling

Systematic resampling [18] needs only one sample U drawn from uniform distribution
U((0; 1/N ]). The numbers of copies {N (i)}Ni=1 are computed similarly to multinomial
resampling schemes using equidistant values

U (i) = U +
l − 1

N
i = 1, 2, . . . , N. (2.13)
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Algorithm 3 Residual resampling
for i = 1 to N do

compute Ñ (i) = bNω̃(i)
t c

end for

for i = 1 to N do

set altered weights according to (2.12)
end for

for i = 1 to
∑N

j=1 Ñ
(j) do

for j = i to i− 1 + Ñ (i) do

state x
∗(i+j)
0:t =x

(i)
0:t

end for

end for

get rest N −
∑N

j=1 Ñ
(j) particles from multinomial resampling for {x(i)

0:t, ω̄
(i)
t }Ni=1.

Although, due to only one random sample needed, systematic resampling is less
computationally expensive than previous methods, each resamplingd particles are
(conditionally) dependent and they are sensitive on permutation of the original
ones. Thus, studying of systematic resampling method is much harder than for
other methods.

2.5.4 Regularized resampling

Using samples from point mass distribution
∑N

i=1 ω̃
(i)
t δ(xt − x

(i)
t ), it is possible that

after resampling step, many particles will have no descendants. In extreme case,
there will be only one type of particles obtained from a single one. Possible ap-
proach to overcome this impoverishment of diversity is to use regularized resam-
pling [6]. In regularized resampling, instead of point mass distribution a continuous
approximation of posterior distribution is used

p̂(xt|y1:t) =
N∑
i=1

ω̃
(i)
t K(

xt − x(i)
t

b
). (2.14)

Here K is kernel density function and b > 0 is scalar parameter, called Kernel
bandwidth. The Kernel density is symmetric function with zero mean and �nite
variance. The kernel K and the parameter b are optimally chosen as minimizers of
mean square error between posterior density and its approximation (2.14) de�ned
as

E

[∫
p̂(xt|y1:t)− p(xt|y1:t)

]
, (2.15)

where E is expectation evaluated with respect to the samples. In particular case
with equal normalized weights, the optimal kernel is the Epanechnikov kernel [9]

Kopt =

{ nx+2
2cnx

(1− ||x||2) if ||x|| < 1,

0 otherwise,
(2.16)
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where cnx is volume of unit sphere in Rnx . Additionally, if the distribution is Gaus-
sian with unit covariance matrix, the corresponding bandwidth is

hopt =

[
8(nx + 4)(2

√
π)nx

cnx

] 1
nx+4

. (2.17)

Due to easy computation and good performance in empirical simulations (e.g. [25]),
this bandwidth is used even in non Gaussian cases. Consequently, regularized re-
sampling can be performed by the algorithm summarized in scheme 4.

Algorithm 4 Regularized resampling

for {x(i)
t , ω̃

(i)
t }Ni=1 calculate the empirical covariance St

perform decomposition DtD
T
t = St

get {x̃∗(i)t }Ni=1 as a resample of {x(i)
t }Ni=1 using any resampling procedures

for i = 1 to N do

draw e(i) ∼ Kopt

regularize x
∗(i)
t = x̃

∗(i)
t + boptDte

(i)

end for

2.6 Sequential Importance Resampling (SIR)

Sequential importance resampling is obtained by usage of a resampling procedure
in original SIS when degeneracy of SIS is above some certain threshold. One of �rst
particle �lter of this type was so called bootstrap �lter [24] which was based on using
prior density as importance density and taking multinomial resampling after each
step.

For estimating a level of the degeneracy (and as a criterion for usage of a resampling
procedure) an e�ective sample size introduced in [19] is used

Neff =
N

1 + Var(ω(x0:t))
. (2.18)

Exact evaluation of Neff is impossible but an estimateN̂eff based on computed ω
(i)
t

is given by

N̂eff =
1∑N

i=1 (ω̃
(i)
t )2

. (2.19)

The resampling step is induced whenever N̂eff is bellow some �xed threshold Ntresh,
see the scheme 5. The adantage of using the SIR in simulation depicted in the �gure
2.2 is presented n the �gure 2.3

Despite of overcoming the degeneracy phenomenon, after resampling, particles are
no longer statistically independent. However in [3], the central limit theorem was
stated at lest for scheme where resampling is used after each step. Also practical
problems occur when resampling procedure is used because, in contrary to SIS, SIR
is not fully paralellizable since during resampling all particles are combined.
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Figure 2.3: Simulation from the �gure 2.2 where the SIS is replaced with the SIR.
If the importance weights are distributed very unevenly (marked by blue lines in
the right part), the resampling step is used for overcoming the degeneracy. Here,
multinomial resampling with Nthresh = 25 is used.

Algorithm 5 Sequential Importance Resampling
for t = 1, 2, . . . do
update {x(i)

0:t−1, ω̃
(i)
t−1}Ni=1 to {x

(i)
0:t, ω̃

(i)
t }Ni=1 using one step of SIS

compute estimate of e�ective sample size

N̂eff =
1∑N

i=1 (ω̃
(i)
t )2

.

if N̂eff < Ntresh then

update {x(i)
0:t, ω̃

(i)
t }Ni=1 to {x

∗(i)
0:t , ω̃

∗(i)
t }Ni=1 using a resampling procedure

end if

end for
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2.7 Auxiliary Sampling Importance Resampling (ASIR)

The goal of ASIR, presented in [23], is to design a variant of SIR which would be more
robust against outliers. The main idea is to use a higher dimensional importance
distribution q(xt, i|y1:t) from which are sampled pairs of {x(i)

t , i
j}Ni=1. Here, i

j denotes

index of antecedent particle of x
(i)
t at iteration t− 1. Straightforward application of

Bayes rule and corresponding de�nitions of i and ω
(i)
t−1 gives

p(xt, i|y0:t) =
p(yt|xt, i, y0:t−1)p(xt, i|y0:t−1)

p(yt|y0:t−1)

∝ p(yt|xt, y0:t−1)p(xt, i|y0:t−1)

= p(yt|xt, y0:t−1)p(xt|i, y0:t−1)p(i|y0:t−1)

= p(yt|xt)p(xt|xt−1)ω
(i)
t−1

The importance function is de�ned to satisfy similar proportionality

q(xt, i|y0:t) ∝ p(yt|µ(i)
t )p(xt|xt−1)ω

(i)
t−1, (2.20)

where µ
(i)
t is some characterization of xt given x

(i)
t−1. Suitable choice could be e.g.

mean value or random sample from p(xt|x(i)
t−1). The importance function is also

chosen to satisfy
q(xt|i, y0:t) = p(xt|x(i)

t−1) (2.21)

and thus
q(xt, i|y0:t) = q(i|y0:t)q(xt|i, y0:t). (2.22)

Combing together with (2.20), we obtain

p(i|y1:t) ∝ p(yt|µ(i)
t )ω

(i)
t−1. (2.23)

Using the previous, the weights are updated according to

ω
(j)
t = ω

(ij)
t−1

p(x
(i)
t , ij|y0:t)

q(x
(i)
t , i|y0:t)

∝ ω
(ij)
t−1

p(yt|x(i)
t )

p(yt|µ
(ij)
t )

. (2.24)

Algorithm of the Auxiliary particle �lter is summarized in the scheme 6. Note, that
it is not necessary to produce whole samples {x(i)

t , ij}Ni=1.

Following previous scheme, it can be seen, that ASIR is similar to the bootstrap
�lter [24]. Both algorithms uses prior density as importance density and resampling
procedure during each step. Motivation for ASIR was to improve performance of
SIR in cases with outliers. The reason, why ASIR is more robust, is that the algo-
rithm performs resampling step �rst and then sample only with respect to particles
which are most likely to be close to the true state. Consequently, the weights after
importance sampling step will be distributed more evenly.
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Algorithm 6 Auxiliary Sampling Importance Resampling
for t = 1, 2, . . . do
for i = 1 to N do

calculate µ
(i)
t

set ω
(i)
t ∝ p(yt|µ(i)

t )ω
(i)
t−1

end for

compute normalized importance weights {ω̃(i)
t }Ni=1 (from {ω

(i)
t }Ni=1)

determine the {ij}Ni=1 using a resampling scheme with {ω̃(i)
t }Ni=1

for j = 1 to N do

sample x
(j)
t from q(xt|ij, y0:t) = p(xt|x

(ij)
t−1)

set x
(j)
0:t = (x

(ij)
0:t−1, x

(j)
t )

end for

for j = 1 to N do

compute (second stage) importance weights using

ω
(j)
t ∝

p(yt|x(j)
t )

p(yt|µ
(ij)
t )

end for

compute normalized importance weights {ω̃(i)
t }Ni=1

end for

2.7.1 Illustrative example

For brief illustration of advantage of ASIR, we consider a system described by

xt = 1.2xt−1 + wt−1

yt = xt + vt
t = 1, . . . , 20 (2.25)

where wt−1 ∼ N (0, σ2
w), vt ∼ N (0, σ2

v), x0 ∼ N (0, σ2
0), σw = 0.01, σv = 0.05 and

σ0 = 0.001. In t = 5, the outlier is simulated by w4 = 0.5. Due to the similarities
depicted above, bootstrap �lter is used for comparison. Multinomial resampling was
used both in ASIR and the bootstrap �lter. Two possible realizations are shown in
�gure 2.4. After 1000 simulations, mean square error using ASIR was lesser of 35%
than with bootstrap �lter.

More comprehensive study of the ASIR performance with illustrative examples was
presented in [23].

2.8 Kalman �lter based estimators

Classical approach to sequential parameter estimation is the well known Kalman
�lter [17]. The Kalman �lter was derived as optimal �lter in the case of linear sys-
tem with Gaussian noise. However, various extensions for nonlinear cases have been
proposed. For later comparison, we brie�y present Kalman �lter and its most com-
monly used extension, the so called Extended Kalman �lter. Till nowadays, many
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Figure 2.4: In the left part of the �gure, typical realization of the scenario is pre-
sented. Dotted lines describe range of the particles. It can be seen, that the ASIR
reduces error caused by the outlier in t = 5 slightly better. In extreme case, the
estimation using the bootstrap �lter is no longer possible, see the right part.

other extensions of the original Kalman �lter has been proposed (e.g. Unscended KF
[15] or Gausian Sum Filters [20]), but all of them are based on Gaussian densities,
which can be limiting in particular applications.

2.8.1 Kalman �lter

In 1960, the solution of optimal estimator of linear system with Gaussian noises
was derived in [17] and was named after its autor as Kalman �lter. The estimator
is optimal in sense of mean square error, thus the estimate x̂ proposed by Kalman
�lter minimizes

E{(xt − x̂t)2|y0:t} (2.26)

between all possible estimators of x.

Due to assumption of linearity, the system is described by

xt = Atxt−1 +Btut−1 + wt−1 t ≥ 1, (2.27)

yt = Htxt + vt−1 (2.28)

where wt ∼ N (0, Qt),vt ∼ N (0, Rt) and matrices At, Bt, Qt and Rt are supposed to
be known.

It was proven in [17] that if the prior density is Gaussian, the aposterior density will
be also Gaussian. The estimate of xt based on y0:t is then distributed according to
N (x̂t|t, Pt|t) and can be computed sequentially as

x̂t|t−1 = Atx̂t−1|t−1 +Btut−1, (2.29)

Pt|t−1 = AtPt−1|t−1A
T
t +Qt, (2.30)

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)

−1, (2.31)

x̂t|t = x̂t|t−1 +Kt(yt+1 −Htx̂t|t−1), (2.32)

Pt|t = (I −KtHt)Pt|t−1. (2.33)

Although very strict assumptions udner which the Kalman �lter is the optimal
estimator, it is still widely used in applications, e.g. [29].
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2.8.2 Extended Kalman �lter

If the system is nonlinear, Kalman �lter can be still used on linearized system. This
straightforward extension is called the Extended Kalman Filter (EKF). Suppose,
that system is described as

xf = ft(xt−1, ut−1) + wt−1, (2.34)

yt = ht(xt) + vt, (2.35)

where wt ∼ N (0, Qt),vt ∼ N (0, Rt) and both functions ft, ht and matrices Qt, Rt

are supposed to be known.

The EKF is obtained simply from the original KF by replacing

At =
∂f

∂x

∣∣∣
x=x̂t−1|t−1,ut−1

, (2.36)

Ht =
∂f

∂u

∣∣∣
x=x̂t|t−1

, (2.37)

x̂t|t−1 = ft(x̂t−1|t−1, ut−1) + wt−1 (2.38)

Extended Kalman �lter is useful especially in cases of weak nonlinearities or if the
linearizing point is near to the true state. In both mentioned cases, the linearization
is su�ciently accurate and the EKF often estimates the true state well. In other
cases, the convergence of EKF estimates to the true state is not guaranteed. Also,
EKF su�ers if the true posterior density is far from the Gaussian.
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Chapter 3

Decision making

In this general formulation, the problem is practically unsolvable. Reasonable spec-
i�cation (with perspective to various applications) is to assume the loss function to
be additive over time, thus

g(x1:N , u0:N−1) =
N−1∑
t=0

gt(xt+1, ut). (3.1)

for some known real functions gt. Under the assumption of additivity, the expecta-
tion loss can be written as

J(x0) = Ew0:N−1

{
N−1∑
t=0

gt(xt+1, µt(xt))

}
. (3.2)

As was pointed out in [10], the minimization of additive loss can be (theoretically)
done by dynamic programming. Dynamic programming is based on optimality prin-
ciple which states that the loss J(x0) on horizon N will be minimal if and only if all
losses Jk(xk) on horizon N − k will by minimal. Thus, the original problem can be
rewritten as recursive problem

JN(xN) = 0,

Jt(xt) = min
ut∈U(xt)

Ewt {gk(xt+1, ut) + Jt+1(xt+1)} , t = 0, . . . , N − 1. (3.3)

Consequently, the minimization proceeds in backward direction for k = N, . . . , 0
storing uk for all possible xk.

3.1 Optimal regulator

Optimal regulator proposes control policy (i.e. the sequence {u0:N−1}) which mini-
mizes the expectation loss (3.2). The optimal policy do not have to exist or to be
unique, the su�cient condition is for example compactness of U and convexity of
expectation loss J . However, analytical approach often su�ers even for very simple
system.
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The exact solution is known for linear system with quadratic loss and Gaussian
densities as so called Linear Quadratic Gaussian control (LQG), see [2]. The LQG
control consist from Kalman �lter (optimal Linear Quadratic Estimator, LQE) and
Linear Quadratic Regulator (LQR).

In more general cases, both expectation and minimization can be performed only
by some approximation technique.

3.2 Dual control

In [10], it was discussed that optimal control policy should not only to control the
system to the desired state, it should also have some probing ability which provide
better system identi�cation and as consequence allow more accurate control actions
in future steps. These two requirements on optimal policy are often in contradiction
and this is what gives the name dual control. This principle could be very helpful in
suboptimal control policy design � for example, if we have some control policy mut
which does not satis�es the duality principle, we can incorporate the probing term
by de�ning new policy as

µ̃t = µt + µprobt , (3.4)

where µprobt is the probing term. In some cases, reasonable choice for probing term
can be scaled white noise.

3.3 PID regulator

PID regulator in its standard form proposes control actions composed from pro-
portional, integral and derivative terms which gives the abbreviation PID. This
regulator is well known since early 20th century and is the most widely used con-
troller in process control until today [1]. Reason for its wide usage is simplicity and
good performance in various applications.

PID regulator produces control actions equal to

u(t) = K

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

)
, (3.5)

where K is the proportional gain, Ti the integral time constant, Td the derivative
time constant and e(t) is error between measured process variable and its desired
value. Functionality of respective terms can be described as follows

• The proportional term � providing an overall control action proportional to
the error signal through the all-pass gain factor.

• The integral term � reducing steady-state errors through low-frequency com-
pensation by an integrator.
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• The derivative term � improving transient response through high-frequency
compensation by a di�erentiator.

Thus, through the integral and derivative term, the PID controller can be understood
as a controller that takes also the past, and the future error into consideration.

For optimum performance of the regulator, parameters K, Ti and Td have to be set
properly. Nonetheless, it is generally impossible to outline optimal values for param-
eters theoretically. Due to this fact, they are obviously tuned manually or by some
adaptive method, see e.g. [1]. More extensive introduction into PID problematics
can be found in [16].

It should be pointed out that the relation between PID control and the original
problem is only through the parameters K, Ti and Td. As a consequence, it is hard
to say how to change the parameters of PID control when the parameters of the
system are changed. This hidden relation makes the detailed study of PID control
practically impossible.

From (3.5), it is clear that the PID regulator does not provide dual control.

3.4 Cautious control and Certainty equivalence prin-

ciple

Cautious control and Certainty equivalence principle are commonly used approaches
for simpli�cation of the original problem (3.3), see [2].

Cautious control is obtained by restriction of the original optimization problem to
horizon of length N = 1. The name origins from fact that the optimization of
control action does not incorporate the advantage of probing. The simpli�cation
by certainty equivalence principle replaces all the random variables in (3.3) by their
mean values. Of course, both approaches can be combined.

Both approximation techniques provide control policy which are not dual, however
these techniques are often the only ones which are able to propose control policy
based on original problem and which allows online computations.

3.5 Methods based on stochastic approximations

3.5.1 Stochastic iterative approximations of dynamic program-
ming (SIDP)

Method of Stochastic iterative Approximations of Dynamic programming (SIDP)
was proposed in [27]. It is based on two main principles:

• solving the dynamic programming (3.3) in several iterations rather than in
only one step,
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• using Monte Carlo approximation of expectations in (3.3).

The �rst approach is so called Iterative Dynamic Programming (IDP). In [27], it was
shown that under relatively general assumptions, control policy iterations provided
by the SIDP algorithm converges to the optimal policy regardless of the initial policy.
Moreover using IDP, it is su�cient to use less points in discretization of the space
because only the part of the space which could be reached in current iteration has
to be discretized.

The algorithm proceeds o�ine and provides the control policy in a form of con-
trol actions for every discretized point and every time step. Then, controlling is
performed using these prepared control actions. In the original article, the control
actions outside the discretized points are linearly interpolated.

However, SIDP algorithm has exponential computational complexity in horizon
length and thus can be applied on systems with long transient response only with
huge computational e�ort, see [27] for evidence. Moreover, if the system noise is
relatively large, convergence of the algorithm is very slow or even unstable.

3.5.2 Stochastic approximations of policy gradient

Stochastic approximations of policy gradient is method presented in [26], here is also
the proof of optimality of the algorithm. Principally, the computation of optimal
control action uses stochastic approximations of the gradient of (3.2) with respect
to the control actions u0:N−1 and then the gradient descent algorithm is utilized for
�nding the optimum.

In the original article [26], Open-Loop Feedback Control (OLFC) approach is used.
The approach lies in optimizing the (3.2) at horizon t = k, . . . , N during every time
step k, see [2]. The disadvantage of OLFC approach is that it is inapplicable on
real-time applications because the computation of single step of the algorithm is
relatively time consuming.
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Chapter 4

Simulations

In this chapter, the application of previously presented estimating and controlling
techniques on real model are presented

4.1 Model of Permanent Magnet Synchronous Ma-

chine drive

This model of PMSM with surface magnets on the rotor is adopted from [22].

4.1.1 Time continuous model

The model is described by conventional equations in the stationary reference frame:

diα
dt

= −R
L
iα +

Ψ

L
ωsinθ +

uα
L

(4.1)

diα
dt

= −R
L
iβ −

Ψ

L
ωcosθ +

uβ
L

(4.2)

dω

dt
=
kpp

2
pΨ

J
(iβcosθ − iαsinθ)−

B

J
ω − pp

J
T (4.3)

dθ

dt
= ω. (4.4)

Here, iα, iβ, uα and uβ represent stator current and voltage in the stationary refer-
ence frame, respectively; ω is electrical rotor speed and θ is electrical rotor position.
R and L is stator resistance and inductance respectively, Ψ is the �ux of permanent
magnets on the rotor, B is friction and T is load torque, J is moment of inertia, pp
is the number of pole pairs, kp is the Park constant. Constraint for voltages is√

u2
α + u2

β ≤ 100. (4.5)

The goal is to design control actions in form of the voltages which results in desired
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original term substitution value in simulations
1− R

L
∆t a 0.9898

Ψ
L

∆t b 0.0072
∆t
L

c 0.0361
1− B

J
∆t d 1

kpp2pΨ

J
∆t e 0.0149

Table 4.1: Parameters of the PMSM.

rotor speed ω̄. The loss function is quadratic∫ T

0

v(u2
α(t) + u2

β(t)) + (ω(t)− ω̄(t))2dt. (4.6)

4.1.2 Discretized model

Discretization of the model was performed using Euler method with the following
result:

iα,t+1 = (1− R

L
∆t)iα,t +

Ψ

L
∆tωtsinθt +

∆t

L
uα,t (4.7)

iβ,t+1 = (1− R

L
∆t)iβ,t −

Ψ

L
∆tωtcosθt +

∆t

L
uβ,t (4.8)

ωt+1 = (1− B

J
∆t)ωt + ∆t

kpp
2
pΨ

J
(iβ,tcosθt − iα,tsinθ, t)−

pp
J
T∆t (4.9)

θt+1 = θt + ωt∆t. (4.10)

In this work, we consider parameters of the model known, we can make the substi-
tutions summarized in table 4.2 to simplify notation, which results in a simpli�ed
model:

iα,t+1 = aiα,t + bωtsinθt + cuα,t (4.11)

iβ,t+1 = aiβ,t − bωtcosθt + cuβ,t (4.12)

ωt+1 = dωt + e(iβ,tcosθt − iα,tsinθt) (4.13)

θt+1 = θt + ωt∆t. (4.14)

The state variables and the voltages can be aggregated into xt = (iα,t, iβ,t, ωt, θt)
T

and ut = (uα,t, uβ,t)
T . Constraint on ut is then

||ut|| ≤ 100. (4.15)

Discretized loss function is of the form

N∑
0

uTt Γut + (xt − x̄t)TΞ(xt − x̄t), (4.16)
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where we denoted

Γ =

(
v 0
0 v

)
, Ξ =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 . (4.17)

The sensor-less control scenario arise when sensors of the speed and position are
missing (from various reasons), thus only observable variables are (iα,t, iβ,t), however,
only up to some precision. In relation to the chapter 1, the system will be modeled
as

xt = g(xt−1, ut−1) + wt−1, (4.18)

yt = Hxt + vt, (4.19)

whereH =

(
1 0 0 0
0 1 0 0

)
, wt−1 ∼ N (0, Q) and vt ∼ N (0, R). In later simulations,

we use

Q = diag(0.0013, 0.0013, 5× 10−6, 10−10), (4.20)

R = diag(0.0006, 0.0006). (4.21)

Values for matrices Q and R and parameters in table 4.2 are adopted from [22],
where real prototype of the PMSM was analyzed.

4.2 Application of presented estimating techniques

on the PMSM model

4.2.1 SMC

As was mentioned in section 2.4, the importance density which minimizes the vari-
ance of the importance weight is p(xt|xt−1, yt) and for Gaussian state space model
with non-linear system equation, analytic evaluation is possible. Following results
are adopted from [6]. De�ning

S−1 = Q−1 +HTRH (4.22)

mt = S(Q−1g(xt−1)HTRyt) (4.23)

one can obtain
xt|(xt−1, yt) ∼ N (mt, S) (4.24)

and

p(yt|xt−1) ∝ exp

(
−1

2
(yt −Hg(xt−1))T (R +HQHT )−1(yt −Hg(xt−1))

)
(4.25)

Although SMC can be theoretically used for arbitrary large state space, estimation of
higher dimension state is less accurate because of need of larger amount of particles
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importance function p(xt|xt−1, yt)
number of particles 60
threshold for resampling 12
resample procedure deterministic resampling

Table 4.2: SMC parameters. The importance function is the optimal one, see sec-
tion 2.4. Performance using di�erent resampling procedures is nearly the same,
deterministic resampling is used because of computational e�ectiveness.

for su�cient coverage of the space. Because of this, we use estimation by SMC only
for unobservable (ωt, θ) and as estimator of (iα,t, iβ,t) are used observed values. It
incorporates errors caused by noise in observations, however, nearly the same level
of accuracy can be achieved by usage of signi�cantly less particles (about 25x lesser).
Moreover, we found that number of particles can be further lowered (approximately
5x) if larger variance on θ is used. Thus, in SMC estimates we use σ̃2

θ = 10−4 instead
of true σ2

θ is 10−10.The parameters of SMC are summarized in table 4.2.

4.2.2 EKF

By linearization of the model in x̂ using notation from section 2.8, we obtain (note,
that equation for observation is already linear)

At =


a 0 b sinθ̂t bω̂t cosθ̂t
0 a −b cosθ̂t bω̂t sinθ̂t

−e sinθ̂t e cosθ̂t d −e(̂iβ,t sinθ̂t + îα,t cosθ̂t)
0 0 ∆t 1

 . (4.26)

Having prior distribution x0 ∼ N (x̂0|0, P0|0), computation of EKF can proceed di-
rectly using equations from section 2.8.

4.3 Application of presented controling techniques

on the PMSM model

In this section, implementation of PI, CC and CEC regulator is presented. Control
policy proposed by SIDP (or extensions of previous controlling techniques enhanced
by SIDP) does not work well, so we omit detail of its implementation on PMSM.
Algorithm of stochastic policy gradient was not implemented because, due to the
computational complexity, it is improper for application on PMSM.

4.3.1 PID control

Historically, �rst PID regulators consists only of two components, the proportional
one and the integral one. Derivative term was added to stabilize system against
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overshoot produced by the integral component. However, the derivative term slows
the transient response and become unstable if the noise and the derivative gain are
su�ciently large, see [1]. Due to this fact and the fact that the transient response
of PMSM is also very large (a�ected by small ∆t), we omit the derivative term in
implementation of PID control on PMSM.

The classical PID regulator control is based on transformation to d − q reference
frame (for detailed derivation see [28])

id = iαcos(θ) + iβsin(θ), (4.27)

iq = iβcos(θ)− iαsin(θ). (4.28)

Desired iq current, denoted īq, is derived using PI controller

īq = PI(ω̄ − ω, Pi, Ii), (4.29)

where PI controller is de�ned as follows

x = PI(ε, P, I) = Pε+ I(St−1 + ε) (4.30)

St = St−1 + ε (4.31)

This current needs to be achieved through voltages ud, uq which are again obtained
from a PI controller

ud = PI(−id, Pu, Iu), (4.32)

uq = PI (̄iq − iq, Pu, Iu). (4.33)

Because of magnetic �eld caused by rotor motion, voltages are compensated by

ud = ud − Lsωīq, (4.34)

uq = uq + Ψpmω. (4.35)

Conversion to uα, uβ is

uα = |U | cosφ, (4.36)

uβ = |U | sinφ, (4.37)

where

|U | =
√
u2
d + u2

q φ =

{
arctanud

uq
+ θ if ud ≥ 0,

arctanud
uq

+ θ + π if ud < 0,
(4.38)

In order to satisfy the constraint (4.15), if U > 10, we �rstly set U := 10.

Based on several initial simulations, constants for PID regulator was set on

Pi = 3, Ii = 0.00375, Pu = 20, Iu = 0.5. (4.39)

It should be noted that PI regulator is based on true state value. If we have only
an estimate of the state, we are tended to use some characteristic of probability
distribution of the state. Reasonable choice can be mean value, maximum value or
even random sample from the distribution. Discussion of e�ect of di�erence choice
in our particular case is mentioned later.

29



4.3.2 Cautious control

Because arbitrary imput of uα,t, uβ,t can cause changes �rstly in ωt+2, we derive
cautious control by minimization of

uTt Γut + E
(
(xt+1 − x̄t+1)TΞ(xt+1 − x̄t+1) + (xt+2 − x̄t+2)TΞ(xt+2 − x̄t+2)

)
. (4.40)

Unconstrained minimization can be performed by setting �rst derivative of (4.40)
with respect to ut to zero, thus using the symmetry of Γ and Ξ

uTt Γ + E

(
(xt+1 − x̄t+1)TΞ

∂xt+1

∂ut
+ (xt+2 − x̄t+2)TΞ

∂xt+2

∂ut

)
= 0. (4.41)

Due to that the control action at t+ 1 does not a�ect any change in ω, xt+2 can be
expressed as

xt+1 = Atxt + Cut + wt (4.42)

xt+2 = At+1xt+1 + wt+1 = At+1Atxt + At+1Cut + At+1wt + wt+1, (4.43)

where At and C are

At = A(xt) =


a 0 b sinθt 0
0 a −b cosθt 0

−e sinθt e cosθt d 0
0 0 ∆t 1

 , C =


c 0
0 c
0 0
0 0

 . (4.44)

It should be mentioned, that although system equation (4.43) is expressed only using
linear operations, it does not mean that the system is linear because matrix At is
nonlinear function of xt.

After substitution in (4.40) and small simpli�cation, we obtain

uTt Γ + E
(
(Atxt − x̄t+1)TΞ + (At+1Atxt − x̄t+2)TΞAt+1

)
C+

+ uTt C
TE
(
Ξ + ATt+1ΞAt+1

)
C = 0. (4.45)

Denoting

Λ2 = E
(
(Atxt − x̄t+1)TΞ + (At+1Atxt − x̄t+2)TΞAt+1

)
C, (4.46)

Σ2 = CTE
(
Ξ + ATt+1ΞAt+1

)
C, (4.47)

we have CC control action ut in the form

uTt = Λ2(Γ + Σ2)−1. (4.48)

Nonetheless, proposed control policy will not work properly. It is due to the fact,
that matrix Λ has elements multiplied by ce ≈ 5.10−4 meanwhile dominant elements
of matrix in denominator are close to v = 0.1. Then, proposed control action ut
will be close to zero, as can be seen from following example. Suppose iα,t, iβ, ωt
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known and equal to zero and ω̄t+2 = 10rad.s−1. Under this assumption, the norm
of proposed control action can be estimated by

||ut||2 = uTt ut ≤
(

10ce

v

)2

E

{(
sinθt
cosθt

)T}
E

{(
sinθt
cosθt

)}
< 5.10−4 . (4.49)

There are several possibilities how to overcome this. The most straightforward
possibility is to arti�cially decrease v when ut is computed. Based on experiments
which are not included, decrease of v under 10−4 yields into control policy which is
able to reach desired ω̄t. However, this solution of the problem is improper because
control policy does not take into consideration future e�ects of ut. This policy often
overshoot the desired value of velocity and results into damped oscillations.

More natural way for overcoming the problem of too small control actions obtained
from (4.48) is to incorporate the e�ect of ut at longer horizon. For arbitrary k ∈ N,
we can extend the loss (4.40) by future loss and write

J = uTΓut + E

(
n∑
k=1

(xt+k − x̄t+k)TΞ(xt+k − x̄t+k)

)
. (4.50)

Similarly as before, future states can be evaluated as

xt+1 = Atxt + Cut + wt (4.51)

xt+k = At+k−1xt+k−1 + wt+k−1 =

= At+k−1At+k−2xt+k−2 + At+k−1wt+k−2 + wt+k−1 = . . . =

=

(
k−1∏
l=0

At+l

)
xt +

(
k−1∏
l=1

At+l

)
Cut +

k−1∑
l=0

((
k−1∏

m=l+1

At+m

)
wt+l

)
, (4.52)

where the products have to be understood by matrix multiplication in correct order.

After simpli�cation, unconstrained minimization condition have the form

uTt Γ + E


n∑
k=1

((k−1∏
l=0

At+l

)
xt − x̄t+k

)T

Ξ

(
k−1∏
l=1

At+l

)C+

+ uTt C
TE


n∑
k=1

(k−1∏
l=1

At+l

)T

Ξ

(
k−1∏
l=1

At+l

)C = 0. (4.53)

Thus, we can use previous notation denoting

Λn = E


n∑
k=1

((k−1∏
l=0

At+l

)
xt − x̄t+k

)T

Ξ

(
k−1∏
l=1

At+l

)C, (4.54)

Σn = CTE


n∑
k=1

(k−1∏
l=1

At+l

)T

Ξ

(
k−1∏
l=1

At+l

)C, (4.55)
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and to obtain CC control law as

uTt = Λn(Γ + Σn)−1. (4.56)

Computation of Λn and Σn is relatively time consuming and for n for which the pro-
posed control law could be su�cient, the online computation is impossible. Nonethe-
less, the computation can be greatly speed up by following approximation. Let n is
su�ciently small that {θt+k}nk=0 is constant sequence up to some desired level and
e�ects of magnetic induction can be neglected in equations for the currents. In other
words, we use the approximation

At ≈ At+l ≈ Ã =


a 0 0 0
0 a 0 0

−e sinθt e cosθt d 0
0 0 0 1

 l = 0, . . . , n (4.57)

Due to this approxiamtion, we can express

k−1∏
l=0

At+l ≈ Ãk =


ak 0 0 0
0 ak 0 0

−eSk sinθt eSk cosθt dk 0
0 0 0 1

 , (4.58)

where

Sk =
k−1∑
l=0

aldk−1−l = dk−1

k−1∑
l=0

(a
d

)l
=
dk − ak

d− a
. (4.59)

After simpli�cation, we obtain Λn and Σn approximated as

Λn ≈ γnE

{(
iα,t
iβ,t

)T (
sin2θt sinθtcosθt

sinθtcosθt cos2θt

)}
+

+
n∑
k=1

(
ceSk−1

(
dkE

{
ωt

(
sinθt
cosθt

)T}
− ω̄t+kE

{(
sinθt
cosθt

)T}))
(4.60)

Σn ≈ δnE

{(
sin2θt sinθtcosθt

sinθtcosθt cos2θt

)}
, (4.61)

where for d 6= 1 (for d = 1 is the computation even simpler)

γn = ce2

n∑
k=1

SkSk−1 = c

(
e

d− a

)2 n−1∑
k=0

(
d(d2)k − (a+ d)(ad)k + (a2)k

)
=

= c

(
e

d− a

)2(
d

1− d2n

1− d2
− (a+ d)

1− (ad)n

1− ad
+ a

1− a2n

1− a2

)
, (4.62)

δn = c2e2

n∑
k=1

S2
k−1 =

(
ce

d− a

)2 n−1∑
k=0

((d2)k − 2(ad)k + (a2)k) =

=

(
ce

d− a

)2(
1− d2n

1− d2
− 2

1− (ad)n

1− ad
+

1− a2n

1− a2

)
. (4.63)
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For comparison with the case without incorporating the future loss, we consider
similar example as before in (4.49). For ω̄t+k = 10rad.s−1 for k = 1, . . . , n, we
obtain an estimate

||ut||2 = uTt ut ≈

(
10ce

v

n∑
k=1

Sk−1

)2

E

{(
sinθt
cosθt

)T}
E

{(
sinθt
cosθt

)}
. (4.64)

This expression gives an intuitive recipe for appropriate n. Successful policy is
obtained by choice n ≥ 50. In later simulations we use n = 80, what corresponds
to incorporating the loss generated in horizon t = 0.01s. However, the quality of
control is only a little sensitive and control actions are nearly the same for large
range of n.

Approximation of (4.56) by (4.60) and (4.61) can be computed very e�ciently.
Expectations can be approximated by estimates proposed by particle �lter. Fur-
thermore, constants γn and δn can be computed o�ine.

More crucial problem with control policy generated according to (4.56) is its caution.
To ilustrate this, suppose, that iα,t, iβ is known and equal to zero, ωt is independent
on θ and θ ∼ U(−π, π). This assumption holds for example for t = 0 if we have
no additional prior information.From (4.60) or (4.64), we can see that the norm of
proposed control action will be zero regardless on di�erence between current and
desired state.

If the control action ut does not satisfy the constraint (4.15), we de�ne

ut := 10
ut
||ut||

. (4.65)

4.3.3 Certainty equivalence control

The problem from end of the previous section can be overcome by replacing all the
random variables by their mean values. It is the principle of Certainty Equivalence
Control (CEC). Of course, this is not the only possibility, it can be taken for example
maximum of probability density or even random sample rather than mean value.
Some experiments with di�erent point approximation of expectation in (4.56) are
included in later sections.

4.3.4 SIDP

SIDP algorithm was implemented and tested without obtaining any su�cient results.
The SIDP was also implemented for improving the previous control policies (PID,
CC, CEC) by perturbations, however also with no measurable improvements. Based
on authors opinion, it is due to the fact, that optimization in (3.3) is performed
step by step, although due to long transient response and relatively large noise, a
pro�t from only one single control action is hard to evaluate. Successful control
policy should give similar control action for su�ciently long horizon to cause any
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measurable e�ects and, as a consequence, to improve the identi�cation and to allow
better control in future. To obtain this behavior by optimizing step by step, it would
take large amount of iterations of algorithm.

Nonetheless in contrary to the other proposed control policies, SIDP could provide
control actions which would have the dual character. This attractive property could
motivate develop of some modi�cations of SIDP.

4.4 Results

4.4.1 Test scenario

The most challenging problem with PMSM is starting phase without any prior
information on θ. Di�culties arise due to the symmetry of the system and long
delays between actions and measurable responses. The performance of particle �lter
is compared with the extended Kalman �lter (EKF).

The goal is to linearly increase the velocity during 0.1s from 0 up to 10rad.s−1 and to
keep this value for next 0.1s. Initial state is drawn randomly from prior distribution

iα,0 ∼ U(−0.01, 0.01)

iα,0 ∼ U(−0.01, 0.01)

ω ∼ U(−0.01, 0.01)

θ ∼ U(−π, π).

4.4.2 Qualitative comparison of estimation

In this section, the qualitative results of estimating by EKF and SMC are presented.
The control policy is generated by PI regulator used for mean value of current
estimate. Results of one realization are summarized in �gure 4.1 and 4.2.

Reason for failure of the EKF is the assumption that the posterior distribution can
be su�ciently approximated by Gaussian distribution. Comparison with estimated
posterior distribution proposed by the SMC shows that the assumption of Gaus-
sianity is improper (at least during �rst 0.1s), see �gures 4.3 and 4.4.

As is generally known (e.g [4]), performance of the EKF can be improved by using
some matrices Q̃ and R̃ during estimation step instead of original Q and R. Es-
timation with matrices containing greater diagonal elements are more sensitive on
di�erences between predicted and observed values and thus estimation is less con-
servative, although proposed estimates are still only Gaussian distributions. These
properties was observed also in our simulations, however, no settings of the matrices
resulted into su�cient reliability.

Intuitive idea of complexity and stability of SMC estimates can be obtained from
�gure 4.5 where two realization of ω during the same simulation are presented.
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Figure 4.1: Currents in simulation of starting phase. In contrast to the SMC,
controlling based on the KF yields to relatively small currents. It is due to the fact,
that mean value of proposed estimate match with desired state and thus only small
control actions are necessary. However, small actions are not very informative which
cause failure of the EKF. On the other hand, in cases where better prior information
is available (and thus better performance of the EKF is assumed), the EKF would
be able to reach desired state very e�ectively. Another remarkable result can be
seen in comparison to �gure 4.2 � the highest currents are reached just after SMC
estimates become su�ciently accurate.

Figure 4.2: Realization and estimation of ωt and θt in simulation of starting phase
of PMSM with KF or SMC estimation, respectively. True states are marked by full
line, estimates by dashed line, and bounds of estimated distribution (in case of the
SMC) and variance (in case of the KF) by dotted line. The reason for failure of
the EKF is convergence to the state with angle which is shifted by π from the true
state. It causes turning in opposite direction.
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Figure 4.3: Estimated posterior distribution of ω and θ in particular times, darker
color means higher probability. From the �gures, it is clear that the posterior dis-
tribution is far from the Gaussian at least during �rst 0.1s. Proper approximation
would be rather sum of two Gaussian distribution in both variables. Nonetheless, it
seems that the Gaussian approximation could be su�cient after convergence during
initial stage. It should be pointed out, that the �gures are only projections of a
joint probability distribution of both variables in particular times. The joint distri-
bution is plotted in �gure 4.4. Time steps, in which resample step was used, can be
identi�ed by sharp edges on estimated posterior distribution evolution.

Figure 4.4: The joint distribution of ω and θ in particular times of the simulation,
darker color means higher probability. The estimated posterior distribution are
multi-modal in initial steps and during the estimation, the modes with low proba-
bility are gradually cut out by resample step. After convergence of the estimate, ω
stays on desired value and θ is shifting due to the rotor motion.
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Figure 4.5: Two realizations of the same simulation using SMC estimator. Initial
state, prior distribution and system noise realization are in both cases the same.
Di�erences are caused by random realizations inside particle �lter. The di�erences
in the realizations are ampli�ed by the fact, that the control actions are based on
di�erent estimates (PI for mean value of estimated distribution is used).
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Figure 4.6: Dependence between prior θ and qulity of estimation. All the values are
averages from 10 simulations.

Although in simulation at the beginning of this section estimates proposed by
Kalman �lter did not converge to the true state, if initial state is not very dif-
ferent from the priori estimate, Kalman �lter provides good results. In contrast,
dependence between convergence of particle �lter and di�erence between priori esti-
mate and initial state is not signi�cant. These results are summarized in �gure 4.6.

4.4.3 Qualitative comparison of control

TO DO - ilustrative �gure of CC, CE, and PID control, di�erent working points

4.4.4 Quantitative results of estimation

TO DO

In all previous illustrative simulations, mean value was used for computing control
actions (proposed by the PI). Nonetheless, for relatively long interval at the be-
ginning of the simulations, mean value of the proposed posterior density on ω is
close to zero although true value is nonzero with high probability, see e.g. �gure
4.5. Consequently, it seems to be more suitable to use for example random sample
drawn from the estimate p̂(xt|y0:t) or its maximum.

In case of the PMSM, computation time for provide estimate is very limiting (only
∆t = 0.000125s). Thus, number of particles should be small. However, using small
number of particles, it may happen that estimation process is corrupted when par-
ticles which approximates initial distribution are distributed very unevenly. For
overcoming this problem, particles approximating initial distribution are chosen
equidistantly in interval [−π, π] instead of random samples. Results of the same
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Figure 4.7: Tracking loss for di�erent numbers of particles (= N). Control actions
are generated by PI controller using maximum of estimated distribution, Neff =
N/3. Process of estimation fails in 5% in the �rst case and in 11% in the second
case.

simulation for N = 60 are in the last column of �gure 4.9 (there were used random
samples).

4.4.5 Quantitative results of control

TO DO

Histograms of tracking losses in 1000 simulations are shown in �gure 4.9. in order
to limit e�ects of random realization inside particle �lter, in all three cases are used
same realizations of all random variables. Also completely deterministic version of
residual resampling is used.

Compare ASIR and Proposal... Stop scenario
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Figure 4.8: comp PID x CE

Figure 4.9: Tracking loss for di�erent chooses of x∗t for which the control action is
computed by PI regulator. Usage of mean value, random sample, and maximum of
estimated distribution on x is compared. The goal is the same as before only second
stage (to keep velocity at 10rad.s−1) is extended to 0.4s. Longer control horizon is
used for distinguishing cases, when estimation fails and when it takes only more time.
Histograms show, that control policy based on maximum of estimated distribution
outperforms other alternatives both in mean tracking loss and system identi�cation.
It also reduces cases in which process of estimation fails (about 8% in the �rst case,
2% in the next two cases).
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