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Introduction

In wide range of subjects, we are dealing with problem of making inferences about a
hidden state of dynamical stochastic system using only noisy observations provided
by the system. This framework occurs for instance in �nance [15], signal processing
[9], or control theory [27]. Due to the system dynamics, we would like to make
inferences sequentially every time where a measurement is received. In this case, a
recursive �lter is a convenient solution. A recursive �ltering approach means that
received data can be processed sequentially rather than as a batch so that it is
not necessary to store the complete data set nor to reprocess existing data if a new
measurement becomes available. Process of estimation is usually done in two stages:
prediction and update. In prediction stage the estimate available in current time
is propagated using the system model and the observation model. The estimate is
then updated through Bayes rule by comparing predicted and measured values.

If the system is linear with Gaussian noise, the optimal solution for state estima-
tion can be computed analytically by so called Kalman �lter [18]. In more general
cases, the optimal solution can not be computed in closed for thus some approxi-
mation technique have to be used. For example extended Kalman �lter uses local
linearization. Nonetheless, in highly nonlinear cases, the linearization is not appro-
priate approximation and consequently the estimates based on linearization tech-
nique may be inaccurate. This disadvantage can be reduced for example by using
so called unscented transformation which is an approach of unscented Kalman �l-
ter [16]. However Kalman �lter and all its derivatives are based on Gaussian noise
assumption and the provided �ltering density is also Gaussian.

Another approach is in so called particle �lters. Particle �lters belongs to the class
of simulation �lters which recursively approximate the �ltering distribution by the
cloud of points or `particles' with point mass distribution. This is a principle of
sequential Monte Carlo methods. Main advantage of particle �lters is that they are
not based on any assumption on linearity of the system or Gaussian distributions,
so they can be used in variety of application where standard approach based on
Kalman �lter su�ers.

The topic of this research project lies in the parameter estimation using particle
�lters and particularly in its application in problematics of optimal control under
uncertainty. The problem of optimal control is formulated in the �rst chapter show-
ing that it consist of two subproblems: 1) to estimate uncertain parameters of the
system which is to be controlled and 2) to make a decision which results in desired
system behavior. The estimation problem is the subject of the second chapter while
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the third chapter deals with the problem of decision making under uncertainty. Com-
parison of presented estimation techniques includes the fourth chapter. Comparison
schemes are focused on di�erent results of particle �lters and Kalman �lter based
methods. It is assumed that particle �lters will be more accurate in highly nonlinear
situations and in scenarios where Gaussian approximation is far from reality.
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Chapter 1

Optimal control problem

In both technical applications and real life, we are tended to making decisions which
should be based on knowledge about system of interest. If we would like to control
system successfully, we are dealing with two subproblems: 1) to observe the system
and 2) to design control action (based on our knowledge) which leads to desired
system behavior. However, these two subproblems are often in con�ict - the most
knowledge about system is obtained when its behavior is unexpected. Moreover, in
practice, due to the presence of noise, our knowledge will not be ever absolute.

This chapter aims to a mathematical formulation of optimal control problem. The
problem is then decomposed into �ltering and decision making which are discussed
in later chapters.

1.1 Problem formulation

In control theory [3], it is convention to describe a dynamical system by means of a
time discrete state-space model. We consider a Markovian state-space model given
by

xt = ft(xt−1, ut−1) + wt−1 t ≥ 1, (1.1)

where t is time index, xt ∈ Rnx is the state of the system, ut ∈ Ut ⊂ Rnu is the control
action , wt ∈ Rnw is i.i.d. random variable and ft : Rnx × Rnu → Rnx are arbitrary
known functions. Initial state x0 is assumed to be distributed according to some
prior density p(x0). Information about the system are provided by an observation

yt = ht(xt) + vt t ≥ 0, (1.2)

here yt ∈ Rny is the observation, vt ∈ Rnv is i.i.d. random variable and ht : Rny ×
Rnv → Rny are arbitrary known functions.

Suppose, that we are interested in system control within control horizon 0 : n.
Then, the aim is to design control sequence u0:n−1, which will lead to desired system
behavior. For determination how accurate is some proposed control sequence, a
known real function g(x1:t, u0:n−1), called loss function, is adopted.
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Due to the noise presence and fact that we can observe only yt, the loss function
can not be evaluated directly, thus we are interested in its expectation

J = E{g(x1:t, u0:t−1)}. (1.3)

Finally, the problem of optimal control is to minimize the expectation loss (1.3) with
respect to u0:t−1 ∈ U0:t−1.

1.1.1 Sequential parameter estimation

According to the system (1.1) and observation (1.2), the model can be viewed as
hidden Markov model described by (without any loss of generality we omit the
dependence on ut)

p(xt|xt−1) t ≥ 0, (1.4)
p(yt|xt) t ≥ 0, (1.5)

where we denote p(x0) := p(x0|x−1) for notation convenience.

The aim of the estimation in time t is to compute p(x0:t|y0:t) and expectation

E{gt} =

∫
gt(x0:t)p(x0:t|y0:t)dx0:t (1.6)

for any p(x0:t|y0:t) integrable function gt : R(t+1)×nx → R. Particullarly, we will be
interested in computation of marginal p(xt|y0:t).

1.1.2 Decision making

Generally, the decision making can be done in two di�erent ways. At �rst, whole
action sequence can be computed before simulation and during simulations there is
no gain from feedback of the system (open-loop control). This o�-line approach, is
reasonable only in cases where measurement is not available or is very unreliable.
This case is o� our interest.

In closed-loop approach, the control actions are computed on-line. It means, that
ut−1 is computed based on current estimate of xt−1 which is sequentially update
using measurement yt. This situation is schematically depicted in the �gure 1.1.
For closed-loop control it is necessary to have some parametric formula for control
action. This parametric formula is usually computed o�-line and only evaluation
using speci�c values is performed on-line. Particularly in time-critical applications
it is necessary to be able evaluate control actions e�ectively.

Of course, control sequence proposed by any parametric formula along control hori-
zon should minimize the expectation loss (1.3). Even if we be able to compute
expectation loss for every u0:t−1 ∈ U0:t−1, direct minimization over action space
U0:t−1 will be impossible already for very simple problems. Due to this complica-
tions, many approximation techniques or problem speci�cations have been proposed,
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regulator estimator
p̂(xt)

system
xt−1 xt

ut−1 yt

Figure 1.1: Close-loop control.

some general approaches are presented in corresponding chapter. Using an approx-
imation of optimal control, it is often crucial to use closed-loop control because we
can evaluate how the proposed control action leads to the desired state and possibly
tune the parametric formula to be more e�ective. On this very simple (but powerful)
idea is based e.g. PID regulator [17].
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Chapter 2

Sequential parameter estimation

In this chapter, we present general framework for sequential parameter estimation.
The main interest lies in sequential Monte Carlo approach. For later comparison,
Kalman �lter based techniques are also brie�y presented.

2.1 Parametr estimation with perfect Monte Carlo

simulation

Before we induce the sequential Monte Carlo, we brie�y introduce a traditional
Monte Carlo method. Suppose, that the aim is to estimate the expectation for
function gt : R(n+1)×nx → R

E{gt} =

∫
gt(x0:t)p(x0:t|y0:t)dx0:t (2.1)

The idea of perfect Monte Carlo is to approximate density p(x0:t|y0:t) by an empirical
estimate

p̂(x0:t|y0:t) =
1

N

N∑
i=1

δ(x0:t − x(i)
0:t), (2.2)

where {x(i)
0:t}Ni=1 are random samples drawn from density p(x0:t|y0:t) and δ is the Dirac

delta function. A Monte Carlo estimate is obtained by substituting the approxima-
tion (2.2) into (2.1), thus

E{gt} ≈ Ê{gt} =

∫
gt(x0:t)p̂(dx0:t|y0:t)dx0:t =

1

N

N∑
i=1

gt(x
(i)
0:t). (2.3)

Due to the strong law of large numbers, Ê(gt) converges to E(gt) almost surely and,
if the variance σ of gt(x0:t) is �nite, a central limit theorems holds

√
N(Ê(gt)− E(gt))→ N (0, σ2) if N →∞. (2.4)

The major problem of this approach is the assumption that we can sample from
density p(x0:t|y0:t).

13



Figure 2.1: Using the IS, the original density p(x0:t|y0:t) is approximated by
p̂(x0:t|y0:t) which is realized by weighted samples {x(i)

0:t}Ni=1 drawn from importance
density q(x0:t|y0:t). Because the probability distribution outside interval covered by
particles is not taken into account in approximation, the IS estimate overestimates
the probability distribution inside the interval. Here, 10000 samples is used

2.2 Importance sampling

Another approximation of expectation (2.1) can be done using Importance Sampling
(IS) method [12]. Unlike previous method, the IS works even if we ca not sample from
density p(x0:n|y0:n). The idea of the IS is to use a well known density q(x0:n|y0:n),
so called importance density, instead of p(x0:n|y0:n), see �gure 2.1. If support of
q(x0:n|y0:n) includes support of p(x0:n|y0:n) the expectation can be expressed as

E{gt} =

∫
gt(x0:t)p(x0:t|y0:t)dx0:t =

∫
gt(x0:n)ω(x0:t)q(x0:t|y0:t)dx0:t∫

ω(x0:t)q(x0:t|y0:t)dx0:t

, (2.5)

where importance weighs ω(x0:t) are de�ned as

ω(x0:t) =
p(x0:t|y0:t)

q(x0:t|y0:t)
. (2.6)

The Monte Carlo estimate can be obtained by using random samples {x(i)
0:t}Ni=1 drawn

from importance density q(x0:t|y0:t) in (2.5)

Ê(gt) =
1
N

∑N
i=1 gt(x

(i)
0:t)ω

(i)
t

1
N

∑N
i=1 ω

(i)
t

=
N∑
i=1

gt(x
(i)
0:t)ω̃

(i)
t , (2.7)

where the normalized importance weighs ω̃(i)
t are

ω̃
(i)
t =

ω
(i)
t∑N

i=1 ω
(i)
t

=
ω(x

(i)
0:t)∑N

i=1 ω(x
(i)
0:t)

(2.8)
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Again, due to the strong law of large numbers, the estimate p̂(dx0:t|y0:t) based on
q̂(dx0:t|y0:t) and {ω̃(i)

t }Ni=1 converges to the true posterior density p(dx0:t|y0:t) if N
tends to in�nity, and thus even estimated expectation Ê(gt) converges to the E(gt).

Disadvantage of this approach is that we need to evaluate p(x(i)
0:t|y0:t) and the impor-

tance weights have to be recomputed over the entire state sequence. Consequently,
computational complexity increases in time.

2.3 Sequential importance sampling

For p(x0:t|y0:t), it can be derived

p(x0:t|y0:t) =
p(yt|x0:t, y0:t−1)p(x0:t|y0:t−1)

p(yt|y0:t−1)

=
p(yt|x0:t, y0:t−1)p(x0:t|y0:t−1)

p(yt|y0:t−1)

=
p(yt|x0:t, y0:t−1)p(xt|x0:t−1, y0:t−1)p(x0:t−1|y0:t−1)

p(yt|y0:t−1)

=
p(yt|xt)p(xt|xt−1)p(x0:t−1|y0:t−1)

p(yt|y0:t−1)
,

where the �rst two equalities follow from Bayesian rule, the third from de�nition
of conditional distribution, and the last one from Markovian property. Thus, the
density satis�es a recursive formula

p(x0:t|y0:t) ∝ p(yt|xt)p(xt|xt−1)p(x0:t−1|y0:t−1). (2.9)

For derivation a recursive formula for importance weights, it is suitable to have an
importance density which satis�es

q(x0:t|y0:t) = q(xt|x0:t−1, y0:t−1)q(x0:t−1|y0:t−1). (2.10)

In this particular case, the x(i)
0:t is formed as x(i)

0:t = (x
(i)
0:t−1, x

(i)
t ), where x(i)

t is drawn
from q(xt|x(i)

0:t−1, y0:t−1). The importance weights for every x
(i)
0:t can be computed

sequentially as

ω
(i)
t ∝ ω

(i)
t−1

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1, y0:t−1)

, (2.11)

what gives the Sequential Importance Sampling (SIS) �lter, see scheme 2.1. The
approximation Ê(gt) of the expectation E(gt) can be computed according to (2.7).

The advantage of using the SIS �lter is that we have to sample only only x(i)
t instead

of whole x(i)
0:t and we do not have to evaluate p(x(i)

0:t|y0:t) .

2.4 Degeneracy of the SIS �lter

For good performance of the SIS �lter, it is suitable to have the importance density
q(x0:t|y0:t) close to the true posterior distribution p(x0:t|y0:t). However, as can be

15



Algorithm 2.1 Sequential Importance Sampling
for t = 1, 2, . . . do
for i = 1 to N do

sample x(i)
t from q(xt|x(i)

0:t−1, y0:t−1)

set x(i)
0:t = (x

(i)
0:t−1, x

(i)
t )

end for

for i = 1 to t do
compute importance weights using recursive formula

ω
(i)
t = ω

(i)
t−1

p(yt|xt)p(xt|xt−1)

q(xt|x0:t−1, y0:t−1)

end for

for i = 1 to N do

normalize importance weights

ω̃
(i)
t =

ω
(i)
t∑N

i=1 ω
(i)
t

end for

end for

seen from following proposition, the variance of importance weights can only increase
over time.

Proposition 1. The variance of importance weights with both x0:t−1 y0:t interpreted
as random variables increases over time.

Proof. [22]

The variance of importance weights can be reduced by using proper importance
density. The optimal one is stated in next proposition.

Proposition 2. The importance density which minimizes the variance of the impor-
tance weight ω

(i)
t conditional upon x

(i)
0:t−1 and x

(i)
0:t−1 is q(xt|x0:t−1, y0:t) = p(xt|xt−1, yt)

Proof. [8]

Using the optimal density in (2.11), the updating procedure for weights will have
the form ω

(i)
t = ω

(i)
t−1p(yt|x

(i)
t−1). However the optimal density has two major draw-

backs: 1) it requires the ability of sampling from p(xt|xt−1, yt), and 2) to calculate
p(yt|x(i)

t−1).The second term can be principally evaluated using Chapman-Kolmogorov
equation which, due to Markov property, has the form

p(yt|x(i)
t−1) =

∫
p(yt, xt|x(i)

t−1)dxt =

∫
p(yt|xt, xt−1)p(xt|x(i)

t−1)dxt =

=

∫
p(yt|xt)p(xt|x(i)

t−1)dxt.
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Figure 2.2: Using the SIS �lter, the particles are updated by the system equation
and weighted with respect to the observation. The left part shows estimated state
xt in particular time, darker color means higher probability. True state is marked by
blue line. All the particles in the corresponding times are depicted in the right part.
Due to the degeneracy phenomenon, importance weights of majority of particles
tend to zero. The number of particles is N = 50.

Both p(xt|xt−1, yt) and p(yt|x(i)
t−1) can be calculated for nonlinear system with linear

observation and Gaussian noise, see [8]. However in general case it is not possible
and some approximation have to be used. Suitable choice can be e.g. usage of local
linearization [8] or prior distribution [25]. This topic, crucial to limit the degeneracy,
is discussed in respective chapter on examples.

In practice, after few iteration, major of the normalized importance weights are close
to zero due to the degeneracy of the SIS �lter, see �gure 2.2. Consequently, the major
of computation e�ort is devoted ine�ciently to trajectories whose probability is
almost zero. Furthermore, any inferences based on these samples will be inaccurate.
To overcome this drawback, the resampling procedure is used.

2.5 Resampling

The idea of the resampling procedure is to eliminate particles with small normalized
weights and to use copies of the others. In other words, the resampling step produces
new particles {x∗(i)0:t }Ni=1 and corresponding weights {ω̃∗(i)t }Ni=1 based on {x(i)

0:t}Ni=1 and
{ω̃(i)

t }Ni=1. In which way, the new particles are produced, it depends on used resam-
pling scheme, see [6] and [14] for overview. All resampling procedures discussed be-
low use ω̃∗(i)t = 1/N , for ilustration example see �gure 2.3. Due to x(i)

0:t = (x
(i)
0:t−1, x

(i)
t ),

the resampling procedure is performed only with respect to x(i)
t . Remaining part

x
∗(i)
0:t−1 is used accordingly to x∗(i)t .

2.5.1 Multinomial resampling

Multinomial resampling, discussed in [25], uses {x∗(i)t }Ni=1 drawn from point mass
distribution

∑N
i=1 ω̃

(i)
t δ(xt − x

(i)
t ) where δ is the Dirac delta function. Practical

implementation of multinomial resampling uses samples drawn from uniform dis-
tribution U((0; 1]) which determines N (i), the numbers of identical copies of the

17



original sample x(i)
0:t. Multinomial resampling is summarized in scheme 2.2.

Algorithm 2.2 Multinomial resampling
for i = 1 to N do

compute the cumulative weights ω̂(i)
t =

∑i
j=1 ω̃

(j)
t

end for

for i = 1 to N do

sample U i from uniform distribution U((0; 1])
end for

order {U (i)}Ni=1 in ascending order
for i = 1 to N do

compute N (i) satis�es
∑i

j=1N
(j) = max0≥l≥N{l|ω̂(i)

t > U (i)}
end for

for i = 1 to N do

for j = i to i− 1 +N (i) do

state x∗(i+j)0:t =x(i)
0:t

end for

end for

2.5.2 Residual resampling

In residual resampling [13], the number of identical copies for the original sample
x

(i)
0:t is set to Ñ (i) = bNω̃(i)

t c for each i. The rest N −
∑N

j=1 Ñ
(j) particles has

to be computed using any other resampling scheme. For example by multinomial
resampling for weights

ω̄
(i)
t =

ω̂(i)N − Ñ (i)

N −
∑N

j=1 Ñ
(j)

i = 1, . . . , N. (2.12)

Another possible choice for second step of residual resampling is to use one additional
copy for �rst N−

∑N
j=1 Ñ

(j) particles ordered according to Ni−Ñ (i). By this choice,
we obtain completely deterministic version of resampling procedure.

Residual resampling proceeds according to the scheme 2.3.

It can be shown (e.g. [6]) that the conditional variance of residual sampling is always
smaller than that of multinomial sampling.

2.5.3 Systematic resampling

Systematic resampling [19] needs only one sample U drawn from uniform distribution
U((0; 1/N ]). The numbers of copies {N (i)}Ni=1 are computed similarly to multinomial
resampling schemes using equidistant values

U (i) = U +
l − 1

N
i = 1, 2, . . . , N. (2.13)
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Algorithm 2.3 Residual resampling
for i = 1 to N do

compute Ñ (i) = bNω̃(i)
t c

end for

for i = 1 to N do

set altered weights according to (2.12)
end for

for i = 1 to
∑N

j=1 Ñ
(j) do

for j = i to i− 1 + Ñ (i) do

state x∗(i+j)0:t =x(i)
0:t

end for

end for

get rest N −
∑N

j=1 Ñ
(j) particles from multinomial resampling for {x(i)

0:t, ω̄
(i)
t }Ni=1.

Although, due to only one random sample needed, systematic resampling is less
computationally expensive than previous methods, each resamplingd particles are
(conditionally) dependent and they are sensitive on permutation of the original
ones. Thus, studying of systematic resampling method is much harder than for
other methods.

2.5.4 Regularized resampling

Using samples from point mass distribution
∑N

i=1 ω̃
(i)
t δ(xt − x

(i)
t ), it is possible that

after resampling step, many particles will have no descendants. In extreme case,
there will be only one type of particles obtained from a single one. Possible ap-
proach to overcome this impoverishment of diversity is to use regularized resam-
pling [7]. In regularized resampling, instead of point mass distribution a continuous
approximation of posterior distribution is used

p̂(xt|y1:t) =
N∑
i=1

ω̃
(i)
t K(

xt − x(i)
t

b
). (2.14)

Here K is kernel density function and b > 0 is scalar parameter, called Kernel
bandwidth. The Kernel density is symmetric function with zero mean and �nite
variance. The kernel K and the parameter b are optimally chosen as minimizers of
mean square error between posterior density and its approximation (2.14) de�ned
as

E
[∫

p̂(xt|y1:t)− p(xt|y1:t)

]
, (2.15)

where E is expectation evaluated with respect to the samples. In particular case
with equal normalized weights, the optimal kernel is the Epanechnikov kernel [10]

Kopt =

{ nx+2
2cnx

(1− ||x||2) if ||x|| < 1,

0 otherwise,
(2.16)
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where cnx is volume of unit sphere in Rnx . Additionally, if the distribution is Gaus-
sian with unit covariance matrix, the corresponding bandwidth is

hopt =

[
8(nx + 4)(2

√
π)nx

cnx

] 1
nx+4

. (2.17)

Due to easy computation and good performance in empirical simulations (e.g. [26]),
this bandwidth is used even in non Gaussian cases. Consequently, regularized re-
sampling can be performed by the algorithm summarized in scheme 2.4.

Algorithm 2.4 Regularized resampling

for {x(i)
t , ω̃

(i)
t }Ni=1 calculate the empirical covariance St

perform decomposition DtD
T
t = St

get {x̃∗(i)t }Ni=1 as a resample of {x(i)
t }Ni=1 using any resampling procedures

for i = 1 to N do

draw e(i) ∼ Kopt

regularize x∗(i)t = x̃
∗(i)
t + boptDte

(i)

end for

2.6 Sequential importance resampling

Sequential Importance Resampling (SIR) �lter is obtained by usage of a resampling
procedure in original SIS �lter when degeneracy of the SIS �lter is above some
certain threshold. One of �rst particle �lter of this type was so called bootstrap
�lter [25] which was based on using prior density as importance density and taking
multinomial resampling after each step.

For estimating a level of the degeneracy (and as a criterion for usage of a resampling
procedure) an e�ective sample size introduced in [20] is used

Neff =
N

1 + Var(ω(x0:t))
. (2.18)

Exact evaluation of Neff is impossible but an estimateN̂eff based on computed ω(i)
t

is given by

N̂eff =
1∑N

i=1 (ω̃
(i)
t )2

. (2.19)

The resampling step is induced whenever N̂eff is bellow some �xed threshold Ntresh,
see the scheme 2.5. The adantage of using the SIR �lter in simulation from �gure
2.2 is presented n the �gure 2.3

Despite of overcoming the degeneracy phenomenon, after resampling, particles are
no longer statistically independent. However in [4], the central limit theorem was
stated at lest for scheme where resampling is used after each step. Also practical
problems occur when resampling procedure is used because, in contrary to the SIS
�lter, SIR �lter is not fully paralellizable since during resampling all particles are
combined.
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Figure 2.3: Simulation from the �gure 2.2 where the SIS �lter is replaced by the
SIR �lter. If the importance weights are distributed very unevenly (marked by blue
lines in the right part), the resampling step is used for overcoming the degeneracy.
Here, multinomial resampling with Nthresh = N/5 = 12 is used.

Algorithm 2.5 Sequential Importance Resampling
for t = 1, 2, . . . do
update {x(i)

0:t−1, ω̃
(i)
t−1}Ni=1 to {x(i)

0:t, ω̃
(i)
t }Ni=1 using one step of the SIS �lter

compute estimate of e�ective sample size

N̂eff =
1∑N

i=1 (ω̃
(i)
t )2

.

if N̂eff < Ntresh then

update {x(i)
0:t, ω̃

(i)
t }Ni=1 to {x∗(i)0:t , ω̃

∗(i)
t }Ni=1 using a resampling procedure

end if

end for
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2.7 Auxiliary sampling importance resampling

The goal of Auxiliary Sampling Importance Resampling (ASIR) �lter, presented
in [24], is to design a variant of the SIR �lter which would be more robust against
outliers. The main idea is to use a higher dimensional importance density q(xt, i|y1:t)

from which are sampled pairs of {x(i)
t , i

j}Ni=1. Here, ij denotes index of antecedent
particle of x(i)

t at iteration t − 1. Straightforward application of Bayes rule and
corresponding de�nitions of i and ω(i)

t−1 gives

p(xt, i|y0:t) =
p(yt|xt, i, y0:t−1)p(xt, i|y0:t−1)

p(yt|y0:t−1)

∝ p(yt|xt, y0:t−1)p(xt, i|y0:t−1)

= p(yt|xt, y0:t−1)p(xt|i, y0:t−1)p(i|y0:t−1)

= p(yt|xt)p(xt|xt−1)ω
(i)
t−1

The importance density is de�ned to satisfy similar proportionality

q(xt, i|y0:t) ∝ p(yt|µ(i)
t )p(xt|xt−1)ω

(i)
t−1, (2.20)

where µ(i)
t is some characterization of xt given x

(i)
t−1. Suitable choice could be e.g.

mean value or random sample from p(xt|x(i)
t−1). The importance density is also chosen

to satisfy
q(xt|i, y0:t) = p(xt|x(i)

t−1), (2.21)

and thus
q(xt, i|y0:t) = q(i|y0:t)q(xt|i, y0:t). (2.22)

Combing together with (2.20), we obtain

q(i|y1:t) ∝ p(yt|µ(i)
t )ω

(i)
t−1. (2.23)

Using the previous, the weights are updated according to

ω
(j)
t = ω

(ij)
t−1

p(x
(i)
t , ij|y0:t)

q(x
(i)
t , i|y0:t)

∝ ω
(ij)
t−1

p(yt|x(i)
t )

p(yt|µ
(ij)
t )

. (2.24)

Algorithm of the ASIR �lter is summarized in the scheme 2.6. Note, that it is not
necessary to produce whole samples {x(i)

t , ij}Ni=1.

Following previous scheme, it can be seen, that the ASIR �lter is similar to the
bootstrap �lter [25]. Both algorithms uses prior density as importance density and
resampling procedure during each step. Motivation for the ASIR �lter was to im-
prove performance of the SIR �lter in cases with outliers. The reason, why the ASIR
�lter is more robust, is that the algorithm performs resampling step �rst and then
sample only with respect to particles which are most likely to be close to the true
state. Consequently, the weights after importance sampling step will be distributed
more evenly. However, if the process noise is large, a single point does not character-
ize p(xt|x(i)

t−1) well, and the ASIR �lter resamples based on apoor approximation of
p(xt|x(i)

t−1). In such scenarios, the use of the ASIR �lter then degrades performance.
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Algorithm 2.6 Auxiliary Sampling Importance Resampling
for t = 1, 2, . . . do
for i = 1 to N do

calculate µ(i)
t

set ω(i)
t ∝ p(yt|µ(i)

t )ω
(i)
t−1

end for

compute normalized importance weights {ω̃(i)
t }Ni=1 (from {ω(i)

t }Ni=1)
determine the {ij}Ni=1 using a resampling scheme with {ω̃(i)

t }Ni=1

for j = 1 to N do

sample x(j)
t from q(xt|ij, y0:t) = p(xt|x

(ij)
t−1)

set x(j)
0:t = (x

(ij)
0:t−1, x

(j)
t )

end for

for j = 1 to N do

compute (second stage) importance weights using

ω
(j)
t ∝

p(yt|x(j)
t )

p(yt|µ
(ij)
t )

end for

compute normalized importance weights {ω̃(i)
t }Ni=1

end for

2.7.1 Illustrative example

For brief illustration of advantage of the ASIR �lter, we consider a system described
by

xt = 1.2xt−1 + wt−1

yt = xt + vt
t = 1, . . . , 20 (2.25)

where wt−1 ∼ N (0, σ2
w), vt ∼ N (0, σ2

v), x0 ∼ N (0, σ2
0), σw = 0.01, σv = 0.05 and

σ0 = 0.001. In t = 5, the outlier is simulated by w4 = 0.5. Due to the similarities
depicted above, bootstrap �lter is used for comparison. Multinomial resampling was
used both in the ASIR �lter and the bootstrap �lter. Two possible realizations are
shown in �gure 2.4. After 1000 simulations, mean square error using the ASIR �lter
was lesser of 35% than with bootstrap �lter.

More comprehensive study of the ASIR �lter with illustrative examples was pre-
sented in [24].

2.8 Kalman �lter based estimators

Classical approach to sequential parameter estimation is the well known Kalman
�lter [18]. The Kalman �lter was derived as optimal �lter in the case of linear sys-
tem with Gaussian noise. However, various extensions for nonlinear cases have been
proposed. For later comparison, we brie�y present Kalman �lter and its most com-
monly used extension, the so called Extended Kalman �lter. Till nowadays, many
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Figure 2.4: In the left part of the �gure, typical realization of the scenario is pre-
sented. Dotted lines describe range of the particles. It can be seen, that the ASIR
�lter reduces error caused by the outlier in t = 5 slightly better. In extreme case,
the estimation using the bootstrap �lter is no longer possible, see the right part.

other extensions of the original Kalman �lter has been proposed (e.g. Unscended KF
[16] or Gausian Sum Filters [21]), but all of them are based on Gaussian densities,
which can be limiting in particular applications.

2.8.1 Kalman �lter

In 1960, the solution of optimal estimator of linear system with Gaussian noises
was derived in [18] and was named after its autor as Kalman �lter. The estimator
is optimal in sense of mean square error, thus the estimate x̂ proposed by Kalman
�lter minimizes

E{(xt − x̂t)2|y0:t} (2.26)

between all possible estimators of x.

Due to assumption of linearity, the system is described by

xt = Atxt−1 +Btut−1 + wt−1 t ≥ 1, (2.27)
yt = Htxt + vt−1, (2.28)

where wt ∼ N (0, Qt), vt ∼ N (0, Rt) and matrices At, Bt, Qt and Rt are supposed to
be known.

It was proven in [18] that estimate of xt based on y0:t is distributed according to
N (x̂t|t, Pt|t) and can be computed sequentially as

x̂t|t = x̂t|t−1 +Kt(yt+1 −Htx̂t|t−1), (2.29)

where

x̂t|t−1 = Atx̂t−1|t−1 +Btut−1, (2.30)

Pt|t−1 = AtPt−1|t−1A
T
t +Qt, (2.31)

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)

−1, (2.32)
Pt|t = (I −KtHt)Pt|t−1. (2.33)

Although very strict assumptions udner which the Kalman �lter is the optimal
estimator, it is still widely used in applications, e.g. [30].
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2.8.2 Extended Kalman �lter

If the system is nonlinear, Kalman �lter can be still used on linearized system. This
straightforward extension is called the Extended Kalman Filter (EKF). Suppose,
that system is described as

xf = ft(xt−1, ut−1) + wt−1, (2.34)
yt = ht(xt) + vt, (2.35)

where wt ∼ N (0, Qt),vt ∼ N (0, Rt) and both functions ft, ht and matrices Qt, Rt

are supposed to be known.

The EKF is obtained simply from the original KF by replacing (2.29) and (2.30) by

x̂t|t = x̂t|t−1 +Kt(yt+1 − ht(x̂t|t−1)), (2.36)
x̂t|t−1 = ft(x̂t−1|t−1, ut−1) + wt−1 (2.37)

where the rest of EKF uses equations from KF with

At =
∂f

∂x

∣∣∣
x=x̂t−1|t−1,ut−1

, (2.38)

Ht =
∂f

∂u

∣∣∣
x=x̂t|t−1

, (2.39)

(2.40)

Extended Kalman �lter is useful especially in cases of weak nonlinearities or if the
linearizing point is near to the true state. In both mentioned cases, the linearization
is su�ciently accurate and the EKF often estimates the true state well. In other
cases, the convergence of EKF estimates to the true state is not guaranteed. Also,
EKF su�ers if the true posterior density is far from the Gaussian.
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Chapter 3

Decision making

In this general formulation, the problem is practically unsolvable. Reasonable spec-
i�cation (with perspective to various applications) is to assume the loss function to
be additive over time, thus

g(x1:N , u0:N−1) =
N−1∑
t=0

gt(xt+1, ut). (3.1)

for some known real functions gt. Under the assumption of additivity, the expecta-
tion loss can be written as

J(x0) = Ew0:N−1

{
N−1∑
t=0

gt(xt+1, µt(xt))

}
. (3.2)

As was pointed out in [11], the minimization of additive loss can be (theoretically)
done by dynamic programming. Dynamic programming is based on optimality prin-
ciple which states that the loss J(x0) on horizon N will be minimal if and only if all
losses Jk(xk) on horizon N − k will by minimal. Thus, the original problem can be
rewritten as recursive problem

JN(xN) = 0,

Jt(xt) = min
ut∈U(xt)

Ewt {gk(xt+1, ut) + Jt+1(xt+1)} , t = 0, . . . , N − 1. (3.3)

Consequently, the minimization proceeds in backward direction for k = N, . . . , 0
storing uk for all possible xk.

3.1 Optimal regulator

Optimal regulator proposes control policy (i.e. the sequence {u0:N−1}) which mini-
mizes the expectation loss (3.2). The optimal policy do not have to exist or to be
unique, the su�cient condition is for example compactness of U and convexity of
expectation loss J . However, analytical approach often su�ers even for very simple
system.
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The exact solution is known for linear system with quadratic loss and Gaussian
densities as so called Linear Quadratic Gaussian control (LQG), see [3]. The LQG
control consist from Kalman �lter (optimal Linear Quadratic Estimator, LQE) and
Linear Quadratic Regulator (LQR).

In more general cases, both expectation and minimization can be performed only
by some approximation technique.

3.2 Dual control

In [11], it was discussed that optimal control policy should not only to control the
system to the desired state, it should also have some probing ability which provide
better system identi�cation and as consequence allow more accurate control actions
in future steps. These two requirements on optimal policy are often in contradiction
and this is what gives the name dual control. This principle could be very helpful in
suboptimal control policy design � for example, if we have some control policy mut
which does not satis�es the duality principle, we can incorporate the probing term
by de�ning new policy as

µ̃t = µt + µprob
t , (3.4)

where µprobt is the probing term. In some cases, reasonable choice for probing term
can be scaled white noise.

3.3 PID regulator

A PID regulator in its standard form proposes control actions composed from pro-
portional, integral and derivative terms which gives the abbreviation PID. This
regulator is well known since early 20th century and is the most widely used con-
troller in process control until today [1]. Reason for its wide usage is simplicity and
good performance in various applications.

The PID regulator produces control actions equal to

u(t) = P

(
e(t) +

1

I

∫ t

0

e(τ)dτ +D
de(t)
dt

)
, (3.5)

where P is the proportional gain, I the integral time constant, D the derivative time
constant and e(t) is error between measured process variable and its desired value.
Functionality of respective terms can be described as follows

• The proportional term � providing an overall control action proportional to
the error signal through the all-pass gain factor.

• The integral term � reducing steady-state errors through low-frequency com-
pensation by an integrator.
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• The derivative term � improving transient response through high-frequency
compensation by a di�erentiator.

Thus, through the integral and derivative term, the PID regulator can be understood
as a controller that takes also the past, and the future error into consideration.

For optimum performance of the regulator, parameters P , I, and D have to be
set properly. Nonetheless, it is generally impossible to outline optimal values for
parameters theoretically. Due to this fact, they are obviously tuned manually or by
some adaptive method, see e.g. [1]. More extensive introduction into PID regulator
problematics can be found in [17].

It should be pointed out that the relation between the PID regulator and the original
problem is only through the parameters P , I, and D. As a consequence, it is hard
to say how to change the parameters of the regulator when the parameters of the
system are changed. This hidden relation makes the detailed study of the regulator
practically impossible.

From (3.5), it is clear that the PID regulator does not provide dual control.

3.4 Cautious control and Certainty equivalence prin-

ciple

Cautious control and Certainty equivalence principle are commonly used approaches
for simpli�cation of the original problem (3.3), see [3].

Cautious Control (CC) is obtained by restriction of the original optimization prob-
lem to horizon of length N = 1. The name origins from fact that the optimization
of control action does not incorporate the advantage of probing. The simpli�ca-
tion by certainty equivalence principle replaces all the random variables in (3.3) by
their mean values, this gives Certainty Equivalence Control (CEC). Of course, both
approaches can be combined.

Both approximation techniques provide control policy which are not dual, however
these techniques are often the only ones which are able to propose control policy
based on original problem and which allows online computations.

3.5 Methods based on stochastic approximations

3.5.1 Stochastic iterative approximations of dynamic program-
ming (SIDP)

Method of Stochastic iterative Approximations of Dynamic programming (SIDP)
was proposed in [28]. It is based on two main principles:
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• solving the dynamic programming (3.3) in several iterations rather than in
only one step,

• using Monte Carlo approximation of expectations in (3.3).

The �rst approach is so called Iterative Dynamic Programming (IDP). In [28], it was
shown that under relatively general assumptions, control policy iterations provided
by the SIDP algorithm converges to the optimal policy regardless of the initial policy.
Moreover using IDP, it is su�cient to use less points in discretization of the space
because only the part of the space which could be reached in current iteration has
to be discretized.

The algorithm proceeds o�ine and provides the control policy in a form of con-
trol actions for every discretized point and every time step. Then, controlling is
performed using these prepared control actions. In the original article, the control
actions outside the discretized points are linearly interpolated.

However, SIDP algorithm has exponential computational complexity in horizon
length and thus can be applied on systems with long transient response only with
huge computational e�ort, see [28] for evidence. Moreover, if the system noise is
relatively large, convergence of the algorithm is very slow or even unstable.

3.5.2 Stochastic approximations of policy gradient

Stochastic approximations of policy gradient is method presented in [27], here is also
the proof of optimality of the algorithm. Principally, the computation of optimal
control action uses stochastic approximations of the gradient of (3.2) with respect
to the control actions u0:N−1 and then the gradient descent algorithm is utilized for
�nding the optimum.

In the original article [27], Open-Loop Feedback Control (OLFC) approach is used.
The approach lies in optimizing the (3.2) at horizon t = k, . . . , N during every time
step k, see [3]. The disadvantage of OLFC approach is that it is inapplicable on
real-time applications because the computation of single step of the algorithm is
relatively time consuming.
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Chapter 4

Simulations

In this chapter, the application of previously presented estimating and controlling
techniques on real model is presented.

4.1 Model of permanent magnet synchronous ma-

chine drive

We will be interested in model of Permanent Magnet Synchronous Machine drive
with surface magnets on the rotor (abbreviated as PMSM). Following description is
adopted from [23].

4.1.1 Time continuous model

The model is described by conventional equations in stationary reference frame

diα
dt

= −R
L
iα +

Ψ

L
ωsinθ +

uα
L

(4.1)

diα
dt

= −R
L
iβ −

Ψ

L
ωcosθ +

uβ
L

(4.2)

dω
dt

=
kpp

2
pΨ

J
(iβcosθ − iαsinθ)−

B

J
ω − pp

J
T (4.3)

dθ
dt

= ω. (4.4)

Here, iα, iβ, uα and uβ represent stator current and voltage in the stationary refer-
ence frame, respectively; ω is electrical rotor speed and θ is electrical rotor position.
R and L is stator resistance and inductance respectively, Ψ is the �ux of permanent
magnets on the rotor, B is friction and T is load torque, J is moment of inertia, pp
is the number of pole pairs, kp is the Park constant. Voltage constraint is√

u2
α + u2

β ≤ 100, (4.5)
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original term substitution value in simulations
1− R

L
∆t a 0.9898

Ψ
L

∆t b 0.0072
∆t
L

c 0.0361
1− B

J
∆t d 1

kpp2pΨ

J
∆t e 0.0149

Table 4.1: Parameters of the PMSM.

where v

The goal is to design control policy for voltages which will result into desired rotor
speed ω̄. The loss function is quadratic∫ T

0

v(u2
α(t) + u2

β(t)) + (ω(t)− ω̄(t))2dt, (4.6)

where v is known constant. During simulations, we use v = 0.1.

4.1.2 Discretized model

Discretization of the model was performed using Euler method with the following
result:

iα,t+1 = (1− R

L
∆t)iα,t +

Ψ

L
∆tωtsinθt +

∆t

L
uα,t (4.7)

iβ,t+1 = (1− R

L
∆t)iβ,t −

Ψ

L
∆tωtcosθt +

∆t

L
uβ,t (4.8)

ωt+1 = (1− B

J
∆t)ωt + ∆t

kpp
2
pΨ

J
(iβ,tcosθt − iα,tsinθ, t)−

pp
J
T∆t (4.9)

θt+1 = θt + ωt∆t. (4.10)

For simplifying the notation, we make a substitution summarized in table 4.1 (we
consider parameters of the model known). It results in

iα,t+1 = aiα,t + bωtsinθt + cuα,t (4.11)
iβ,t+1 = aiβ,t − bωtcosθt + cuβ,t (4.12)
ωt+1 = dωt + e(iβ,tcosθt − iα,tsinθt) (4.13)
θt+1 = θt + ωt∆t. (4.14)

The state variables and the voltages can be aggregated into xt = (iα,t, iβ,t, ωt, θt)
T

and ut = (uα,t, uβ,t)
T . Constraint on ut is then

||ut|| ≤ 100. (4.15)

Discretized loss function is of the form
N∑
0

uTt Γut + (xt − x̄t)TΞ(xt − x̄t), (4.16)
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where we denoted

Γ =

(
v 0
0 v

)
, Ξ =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 . (4.17)

The sensor-less control scenario arise when sensors of the speed and position are
missing (from various reasons). The only observable variables are thus (iα,t, iβ,t),
however, only up to some precision. In relation to the chapter 1, the system is
modeled as Markovian state-space model given by

xt = g(xt−1, ut−1) + wt−1 t ≥ 0, (4.18)
yt = Hxt + vt, (4.19)

whereH =

(
1 0 0 0
0 1 0 0

)
, wt−1 ∼ N (0, Q) and vt ∼ N (0, R). In later simulations,

we use

Q = diag(0.0013, 0.0013, 5× 10−6, 10−10), (4.20)
R = diag(0.0006, 0.0006). (4.21)

Values for matrices Q and R and parameters in table 4.1 are adopted from [23],
where real prototype of the PMSM was analyzed.

4.2 Application of presented estimating techniques

on the PMSM

In this section, estimating techniques described in chapter 2 are applied on the
PMSM.

4.2.1 Particle �lters

As was mentioned in section 2.4, the importance density which minimizes the vari-
ance of the importance weight is p(xt|xt−1, yt) and particular case of Gaussian state
space model with non-linear system equation allows analytic solution. Following
results are adopted from [7]. De�ning

S−1 = Q−1 +HTRH, (4.22)

mt = S(Q−1g(xt−1)HTRyt), (4.23)

one can obtain
xt|(xt−1, yt) ∼ N (mt, S), (4.24)

and

p(yt|xt−1) ∝ exp

(
−1

2
(yt −Hg(xt−1))T (R +HQHT )−1(yt −Hg(xt−1))

)
. (4.25)
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We denote SIRopt the version of SIR �lter with optimal importance density. For
later comparison, we also denote SIRprior the version of SIR �lter in which the prior
density as importance density is used.

Although SIR �lters can be theoretically used for arbitrary large state space, esti-
mation in higher dimension states is less accurate because of need of larger amount
of particles for su�cient coverage of the space. Because of this, we use estimation
by SIR �lters only for unobservable (ωt, θ); as estimator of (iα,t, iβ,t), we use only ob-
served values. It incorporates errors caused by noise in observations, however, nearly
the same level of accuracy can be achieved by usage of signi�cantly less particles
(about 25x lesser).

We also tested the ASIR �lter, nonetheless, similar state space reduction as before is
not functioning well. It is due to the fact, that usage of only single point for approx-
imation of currents increases noises and as was mentioned in [2] in the case of too
noisy observations the performance of the ASIR �lter is unreliable. Consequently,
inside the ASIR �ler, the whole state xt is approximated by particles.

Using both SIRprior and ASIR �lter, performance using true matrix R was insu�-
cient; both �lters was too restrictive during weight updating step and often converge
to a wrong state. Performance was improved by using covariance matrix R̃ = ρR in-
stead of R, where ρ > 1 is a real parameter. Ampli�cation of ρ increases robustness
of respective particle �lter but in case of convergence it also increases average error
of estimation. Proper ρ should be chosen after some initial simulations. Based on
several quantitative test, we will use ρ = 100 in case of SIRprior and even ρ = 1000
for the ASIR �lter. Moreover, we found that the failure of estimation also occurs
in case where SIRopt is used but the number of failures were much more lesser than
in cases of the SIRprior and ASIR �lter. Nonetheless, we will incorporate the same
approach to add robustness by using ρ = 10.

Moreover, we found that number of particles can be lowered (approximately 5x)
without loss of accuracy if larger variance on θ is used. Thus in all particle �lters,
we use σ̃2

θ = 10−4 instead of true σ2
θ = 10−10.

Using small number of particles, it may happen that estimation process is corrupted
when particles approximating initial state are generated very unevenly. For overcom-
ing this problem, particles approximating initial distribution are chosen equidistantly
in interval [−π, π] instead of random samples

Performance using di�erent resampling procedures was nearly the same in our simu-
lations, thus, we use only deterministic resampling for its computational e�ectiveness
and fully deterministic version of residual resampling in case when we would like to
omit e�ects caused by random realization inside particle �lter.

In later simulations, we want to be able to estimate θ wherever can be in interval
(−π, π). As consequence, if we have no additional initial information, we have
to have whole interval (−π, π) discretized in initial distribution on θ. This may
cause a problem when the true state is close to one of the boundary values � large
weight will obtain both particles with θ close to −π and π because of periodicity of
trigonometric functions. It may degrade estimations based on this approximation,
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in extreme case for example cosE{θ} ≈ −1, although E{cosθ} ≈ 1. This particular
problem makes CEC regulator unable to reaching desired state when initial state is
close to π (or −π). This can be overcame by utilizing not the cosE{θ} but E{cosθ}.
Another (and also more general) possibility how to overcome the problem is to make
approximation on θ continuous in π when it is useful. It can done by transformation

Φ(θ) =

{
θ if θ > 0,
θ + 2π otherwise. (4.26)

The transformation overcomes the discontinuity in π. As suitable indicator for
introducing the transformation, we utilize standard deviation of estimates based on
distributions before and after transformation (denoted σ1 and σ2). If σ1 ≥ 1.5σ2, we
utilize the transformation. Practical usage of the transformation is shown in �gure
??

4.2.2 EKF

By linearization of the model in x̂, and using notation from section 2.8, we obtain
(note, that equation for observation is already linear)

At =


a 0 b sinθ̂t bω̂t cosθ̂t
0 a −b cosθ̂t bω̂t sinθ̂t

−e sinθ̂t e cosθ̂t d −e(̂iβ,t sinθ̂t + îα,t cosθ̂t)
0 0 ∆t 1

 . (4.27)

Having initial distribution x0 ∼ N (x̂0|0, P0|0), computation of EKF can proceed
directly using equations from section 2.8.

As will be shown in subsection 4.4.2, the EKF is unable to �lter proposed density
properly in cases where only weak prior information is available. However, as is
generally known (e.g [5]), performance of the EKF can be improved by using some
matrices Q̃ and R̃ during estimation step instead of original matrices Q and R.
Estimation with matrices containing greater diagonal elements is more sensitive on
di�erences between predicted and observed values and thus estimation is less con-
servative, although proposed estimates are still only Gaussian distributions. These
properties was observed also in our simulations, however, no settings of the matri-
ces resulted into su�cient reliability. This issue is shortly discussed in respective
subsection.

4.3 Application of presented controling techniques

on the PMSM

In this section, implementation of PI, CC and CEC regulator is presented. Control
policy proposed by SIDP (or extensions of previous controlling techniques enhanced
by SIDP) does not work well, so we omit detail of its implementation on the PMSM.
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Algorithm of stochastic policy gradient was not implemented because, due to the
computational complexity, it is improper for application on the PMSM.

4.3.1 PI regulator

Historically, �rst PID regulators consisted from only of two components � the pro-
portional one and the integral one. Derivative term was added to stabilize system
against overshoot produced by the integral component. However, the derivative
term slows the transient response and causes instability of PID regulator if noises
are su�ciently large, see [1]. Due to this fact and the fact that the transient response
of the PMSM is also very large (a�ected by small ∆t), we omit the derivative term
in implementation of the PID regulator on the PMSM.

The classical PI regulator control is based on transformation to d−q reference frame
(for detailed derivation see [29])

id = iαcos(θ) + iβsin(θ), (4.28)
iq = iβcos(θ)− iαsin(θ). (4.29)

For desired ω, �rstly, we compute target iq current, denoted īq. It is derived using
the PI regulator

īq = PI(ω̄ − ω, Pi, Ii), (4.30)

where arbitrary PI controller is de�ned as follows

x = PI(ε, P, I) = Pε+ I(St−1 + ε), (4.31)
St = St−1 + ε. (4.32)

This current needs to be achieved through voltages ud, uq which are again obtained
from PI regulators

ud = PI(−id, Pu, Iu), (4.33)
uq = PI(̄iq − iq, Pu, Iu). (4.34)

Because of magnetic �eld caused by rotor motion, voltages are compensated by

ud = ud − Lsωīq, (4.35)
uq = uq + Ψpmω. (4.36)

Conversion to uα, uβ is done by

uα = |U | cosφ, (4.37)
uβ = |U | sinφ, (4.38)

where

|U | =
√
u2
d + u2

q φ =

{
arctanud

uq
+ θ if ud ≥ 0,

arctanud
uq

+ θ + π if ud < 0.
(4.39)
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In order to satisfy the constraint (4.15), if U > 10, we �rstly set U := 10.

Based on several initial simulations, constants for PI regulators were set on

Pi = 3, Ii = 0.00375, (4.40)
Pu = 20, Iu = 0.5. (4.41)

It should be noted that the PI regulator is based on the value of the true state .
Having only an estimate of the state, we are tended to use some characteristic of
probability distribution of the state, for example mean value. Another possibility
could be maximum value or random sample from the distribution, however, these
are more sensitive on accuracy of the estimate and, in a case of large uncertainty,
they often propose unstable control actions. Due to this we will aim only on the PI
regulator computed for mean value.

4.3.2 Cautious control

Because arbitrary input of ut can cause changes �rstly in ωt+2, we derive cautious
control by minimization of

uTt Γut + E
(
(xt+1 − x̄t+1)TΞ(xt+1 − x̄t+1) + (xt+2 − x̄t+2)TΞ(xt+2 − x̄t+2)

)
. (4.42)

We note that the �rst term in expectation can be omitted due to the fact that its
derivative with respect to ut is zero, however, we keep it for better readability.

We outline only unconstrained minimization of (4.42). If obtained control action ut
does not satisfy the constraint (4.15), we de�ne

ut := 10
ut
||ut||

. (4.43)

Unconstrained minimization can be performed by setting �rst derivative of (4.42)
with respect to ut to zero, thus using the symmetry of Γ and Ξ

uTt Γ + E
(

(xt+1 − x̄t+1)TΞ
∂xt+1

∂ut
+ (xt+2 − x̄t+2)TΞ

∂xt+2

∂ut

)
= 0. (4.44)

Due to that the control action at t+ 1 does not a�ect any change in ω, xt+2 can be
expressed as

xt+1 = Atxt + Cut + wt (4.45)
xt+2 = At+1xt+1 + wt+1 = At+1Atxt + At+1Cut + At+1wt + wt+1, (4.46)

where At and C are

At = A(xt) =


a 0 b sinθt 0
0 a −b cosθt 0

−e sinθt e cosθt d 0
0 0 ∆t 1

 , C =


c 0
0 c
0 0
0 0

 . (4.47)
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It should be mentioned, that although system equation (4.46) is expressed only using
linear operations, it does not mean that the system is linear because matrix At is
nonlinear function of xt.

After substitution in (4.42) and small simpli�cation, we obtain

uTt Γ + E
(
(Atxt − x̄t+1)TΞ + (At+1Atxt − x̄t+2)TΞAt+1

)
C+

+ uTt C
TE
(
Ξ + ATt+1ΞAt+1

)
C = 0. (4.48)

Denoting

Λ2 = E
(
(Atxt − x̄t+1)TΞ + (At+1Atxt − x̄t+2)TΞAt+1

)
C, (4.49)

Σ2 = CTE
(
Ξ + ATt+1ΞAt+1

)
C, (4.50)

we have CC action ut in the form

uTt = Λ2(Γ + Σ2)−1. (4.51)

Nonetheless, proposed control policy will not work properly. It is due to the fact,
that matrix Λ2 has elements multiplied by ce ≈ 5.10−4 meanwhile dominant elements
of matrix in denominator are close to v = 0.1. Then, proposed control action ut will
be close to zero as can be viewed clearly from following example. Suppose iα,t, iβ, ωt
known and equal to zero and ω̄t+2 = 10rad.s−1. Under this assumption, the norm
of proposed control action is bounded by

||ut||2 = uTt ut ≤
(

10ce

v

)2

E

{(
sinθt
cosθt

)T}
E
{(

sinθt
cosθt

)}
< 5.10−4 . (4.52)

There are several possibilities how to overcome this. The most straightforward
possibility is to arti�cially decrease v when ut is computed. Based on experiments
which are not included, decrease of v under 10−4 yields into control policy which is
able to reach desired ω̄t. However, this solution of the problem is improper because
control policy does not take into consideration future e�ects of ut. This policy often
overshoot the desired value of velocity and results into damped oscillations.

More natural way for overcoming the problem of too small control actions obtained
from (4.51) is to incorporate the e�ect of ut at longer horizon. For arbitrary k ∈ N,
we can extend the loss (4.42) by future loss and write

J = uTΓut + E

(
n∑
k=1

(xt+k − x̄t+k)TΞ(xt+k − x̄t+k)

)
. (4.53)

Similarly as before, future states can be evaluated as

xt+1 = Atxt + Cut + wt (4.54)
xt+k = At+k−1xt+k−1 + wt+k−1 =

= At+k−1At+k−2xt+k−2 + At+k−1wt+k−2 + wt+k−1 = . . . =

=

(
k−1∏
l=0

At+l

)
xt +

(
k−1∏
l=1

At+l

)
Cut +

k−1∑
l=0

((
k−1∏

m=l+1

At+m

)
wt+l

)
, (4.55)
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where the products have to be understood by matrix multiplication in correct order.

After simpli�cation, condition for unconstrained minimization have the form

uTt Γ + E


n∑
k=1

((k−1∏
l=0

At+l

)
xt − x̄t+k

)T

Ξ

(
k−1∏
l=1

At+l

)C+

+ uTt C
TE


n∑
k=1

(k−1∏
l=1

At+l

)T

Ξ

(
k−1∏
l=1

At+l

)C = 0. (4.56)

Thus, we can use previous notation denoting

Λn = E


n∑
k=1

((k−1∏
l=0

At+l

)
xt − x̄t+k

)T

Ξ

(
k−1∏
l=1

At+l

)C, (4.57)

Σn = CTE


n∑
k=1

(k−1∏
l=1

At+l

)T

Ξ

(
k−1∏
l=1

At+l

)C, (4.58)

and to obtain CC action as

uTt = Λn(Γ + Σn)−1. (4.59)

Computation of Λn and Σn is relatively time consuming and for n for which the pro-
posed control law could be su�cient, the online computation is impossible. Nonethe-
less, the computation can be greatly speed up by following approximation. Let n is
su�ciently small that {θt+k}nk=0 is constant sequence up to some desired level and
e�ects of magnetic induction in equations for the currents can be neglected. In other
words, we use the approximation

At ≈ At+l ≈ Ã =


a 0 0 0
0 a 0 0

−e sinθt e cosθt d 0
0 0 0 1

 l = 0, . . . , n (4.60)

Due to this approxiamtion, we can express

k−1∏
l=0

At+l ≈ Ãk =


ak 0 0 0
0 ak 0 0

−eSk sinθt eSk cosθt dk 0
0 0 0 1

 , (4.61)

where

Sk =
k−1∑
l=0

aldk−1−l = dk−1

k−1∑
l=0

(a
d

)l
=
dk − ak

d− a
. (4.62)
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After simpli�cation, we obtain Λn and Σn approximated as

Λn ≈ γnE

{(
iα,t
iβ,t

)T ( sin2θt −sinθtcosθt
−sinθtcosθt cos2θt

)}
+

+
n∑
k=1

(
ceSk−1

(
dkE

{
ωt

(
sinθt
cosθt

)T}
− ω̄t+kE

{(
sinθt
cosθt

)T}))
(4.63)

Σn ≈ δnE
{(

sin2θt −sinθtcosθt
−sinθtcosθt cos2θt

)}
, (4.64)

where for d 6= 1 (for d = 1 is the computation even simpler)

γn = ce2

n∑
k=1

SkSk−1 = c

(
e

d− a

)2 n−1∑
k=0

(
d(d2)k − (a+ d)(ad)k + (a2)k

)
=

= c

(
e

d− a

)2(
d

1− d2n

1− d2
− (a+ d)

1− (ad)n

1− ad
+ a

1− a2n

1− a2

)
, (4.65)

δn = c2e2

n∑
k=1

S2
k−1 =

(
ce

d− a

)2 n−1∑
k=0

((d2)k − 2(ad)k + (a2)k) =

=

(
ce

d− a

)2(
1− d2n

1− d2
− 2

1− (ad)n

1− ad
+

1− a2n

1− a2

)
. (4.66)

For comparison with the case without incorporating the future loss, we consider
similar example as before in (4.52). For ω̄t+k = 10rad.s−1 for k = 1, . . . , n, we
obtain an estimate

||ut||2 = uTt ut ≈

(
10ce

v

n∑
k=1

Sk−1

)2

E

{(
sinθt
cosθt

)T}
E
{(

sinθt
cosθt

)}
. (4.67)

This expression gives an intuitive recipe for appropriate n. Successful policy is
obtained by choice n ≥ 50. In later simulations we use n = 80, what corresponds
to incorporating the loss generated in horizon t = 0.01s. However, the quality of
control is only a little sensitive and control actions are nearly the same for large
range of n.

Approximation of (4.59) by (4.63) and (4.64) can be computed very e�ciently.
Expectations can be approximated by estimates proposed by particle �lter. Fur-
thermore, constants γn and δn can be computed o�ine.

More crucial problem with control policy generated according to (4.59) is its caution.
To ilustrate this, suppose, that iα,t, iβ is known and equal to zero, ωt is independent
on θ and θ ∼ U(−π, π). This assumption holds for example for t = 0 if we have
no additional initial information.From (4.63) or (4.67), we can see that the norm
of proposed control action will be zero regardless on di�erence between actual and
desired state.
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4.3.3 Certainty equivalence control

The problem from the end of subsection 4.3.2 can be overcome by utilizing princi-
ple of Certainty Equivalence Control (CEC). According to that, we replace all the
random variables in (4.63) and (4.64) by their mean values.

4.3.4 Dual control

Another possibility how to handle the excesive caution of CC regulator is to add
some probing term according to (3.4). At �rst, we denote

α(xt) =

∣∣∣∣∣∣∣∣E{( sinθt
cosθt

)}∣∣∣∣∣∣∣∣
2

. (4.68)

Because 0 ≤ α(xt) ≥ 1, where the lower bound is reached for uniform distribution
and the upper bound for Dirac distribution, α(xt) is proper measure for introducing
some probing term. As consequence, we modify original CC regulator as follows

ut = α(xt)CC(xt) + (1− α(xt))u
prob
t , (4.69)

where CC(xt) is control action computed by (4.59) and uprob
t is some probing term.

Based on our experience with the system, reasonable choice of probing term is
generator of constant voltage whose phase is changing monotonically

uprob
t = U0

(
sin
(

2π
T
t+ φ0

)
cos
(

2π
T
t+ φ0

)
)
. (4.70)

Parameters of the probing term has to be tuned, we utilize U0 = 10, T = 240
(corresponds to turning by 2π every 0.06s) and φ0 = 0. Although here is necessity
of tuning the regulator, every parameter has simple meaning and proper setting can
be done intuitively after few initial simulations.

4.3.5 SIDP

The SIDP algorithm was implemented and tested without obtaining any su�cient
results. The algorithm was also implemented for improving previously presented reg-
ulators by perturbations, however, again with no measurable improvements. Based
on author's opinion, it is due to the fact, that optimization in (3.3) is performed
step by step, although due to the long transient response and relatively large noise,
a pro�t from only one single control action is hard to evaluate. Successful control
policy should give similar control action for su�ciently long horizon to cause any
measurable e�ects and, as a consequence, to improve the identi�cation and to allow
better control in future. To obtain this behavior by optimizing step by step, it would
take large amount of iterations of algorithm.

Nonetheless, in contrary to original PID, CC and CEC regulator, the SIDP algorithm
could provide control actions which would have the dual character naturally. This
attractive property could motivate develop of some modi�cations of SIDP.
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4.4 Results

4.4.1 Test scenario

The most challenging problem with the PMSM is starting phase without any initial
information on θ. Di�culties arise due to the symmetry of the system and long
delays between actions and measurable responses. The performance of particle �lters
and the EKF is compared.

The goal is to linearly increase the velocity during 0.1s from 0 up to 10rad.s−1 and
to keep this value for next 0.1s. Initial state is drawn randomly from distribution
representing initial estimate.

iα,0 ∼ U(−0.01, 0.01)

iα,0 ∼ U(−0.01, 0.01)

ω ∼ U(−0.01, 0.01)

θ ∼ U(−π, π). (4.71)

4.4.2 Qualitative comparison of �lters

In this subsection, the qualitative results of estimating by SIRopt �lter and the EKF
are presented. Results for the ASIR �lter and the SIRprior are omitted because are
(qualitatively) near the same as for SIRopt. As consequence, comparison of these
variants of particle �lter is included in later subsection where quantitative results
are presented.

For SIRopt, we use N = 60, Nthresh = N/5 = 12 and deterministic resampling
procedure. Control actions are generated from PI regulator (mean value of estimated
distribution is used).

TODO-predelat obrazek Result of one realization is summarized in �gure 4.4.2. In
contrast to the SIRopt �lter, controlling based on the EKF yields to relatively small
currents. It is due to the fact, that mean value of proposed estimate match with
desired state and, thus, only small control actions are necessary. However, small
actions are not very informative which cause failure of the EKF. As consequence
of the failure, the EKF convergences to the state with angle shifted by π from the
true state. It causes turning in opposite direction. On the other hand, in cases
where better initial information is available (and thus better performance of the
EKF is assumed), the EKF would be able to reach desired state very e�ectively.
Another remarkable result is that the highest currents are reached just after estimate
proposed by the SIRopt �lter becomes su�ciently accurate.

TODO-predelat obrazek Wrong convergence of the EKF is caused by the assumption
that the posterior distribution can be su�ciently approximated by Gaussian distri-
bution. Comparison with estimated posterior distribution proposed by the SIRopt

�lter shows that the assumption of Gaussianity is improper (at least during �rst
0.05s), see �gures 4.2 and 4.3. From �gure 4.2, it is clear that the posterior distri-
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Figure 4.1: Qualitative comparison of di�erent �lters. For ωt and θt, the true state is
marked by full line, the estimate by dashed line, and bound of estimated distribution
(in case of the SIRopt) and variance (in case of the KF) by dash-dot line.

Figure 4.2: Estimated posterior distribution of ω and θ in particular times, darker
color means higher probability. Time steps, in which resample step was used, can
be identi�ed by sharp edges in estimates of posterior distribution.

bution is far from the Gaussian at least during �rst 0.05s. Proper approximation
would be rather sum of Gaussian distributions in both variables. Nonetheless, it
seems that the Gaussian approximation could be su�cient after convergence during
initial stage. It should be pointed out, that �gure 4.2 presents only projections
of joint probability distribution of both variables in particular times. The joint
distribution is plotted in �gure 4.3.

TODO-predelat obrazek Although in previous simulation the EKF did not converge
to the true state, if the initial estimate approximates initial state well, the EKF
provides good results. In contrast, dependence between convergence of particle �lter
and di�erence between initial estimate and initial state is not signi�cant. These
results are summarized in �gure 4.4.

Intuitive idea of complexity and stability of particle �lter (the SIRopt �lter in our
case) can be obtained from �gure 4.5 where two realization of ω during the same
simulation are presented. Initial state, initial estimate and system noise realization
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Figure 4.3: The joint distribution of ω and θ in particular times of the simu-
lation, darker color means higher probability. After convergence of the estimate
(t > 0.075s), ω stays on desired value and θ is shifting due to the rotor motion.

Figure 4.4: Dependence between initial θ and qulity of estimation. All the values
are averages from 10 simulations.
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Figure 4.5: Two realizations of the same simulation using SIRopt �lter. For ωt and
θt, the true state is marked by full line, the estimate by dashed line, and bound of
estimated distribution by dash-dot line. In histograms, darker color means higher
probability.

are in both cases the same. Di�erences are caused only by random realizations
inside particle �lter. Note, that di�erences are ampli�ed by the fact, that the control
actions are based on di�erent estimates.

TODO-all

4.4.3 Qualitative comparison of control

This subsection deals with qualitative results of previously described regulators.
For excluding in�uence of noise, all the realizations of noise in the system are set to
zero. The SIRopt �lter with deterministic variant of residual resampling is used for
�ltering. Also, random realizations inside the �lter are the same in all simulations.

Figure 4.6 shows results when di�erent regulators are used. In the CEC and PI
regulator, mean value of estimate is utilized for computing control action. As was
mentioned at the end of subsection 4.3.2, having no additional information about
initial state, the CC regulator proposes control action equal to zero. Due to this
fact, the system will stay unchanged and the situation will be repeated in next time
steps. As consequence, the CC regulator is unable to change the state. In practice,
the state of the system is in�uenced by noise realizations and through this, the
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Figure 4.6: Qualitative comparison of di�erent regulators. For ωt and θt, the true
state is marked by full line, the estimate by dashed line, and bound of estimated
distribution (in case of the SIRopt) and variance (in case of the KF) by dash-dot
line. The last �gure shows norm of control actions in respective times (U = ||u||).

system will de�ected what (after su�ciently long time) gives additional information
which eliminates zero control. From the �gure, it can also be seen the advantage of
incorporating the future e�ects of control action � although evolution of the state
controlled by the CEC or PI regulator is nearly the same, the PI regulator proposes
more agressive control actions which yields into more rapid changes in currents
without any valuable e�ect. As consequence, we assume that the controling using
the PI regulator will generate higher loss. After reaching the desired state, regulators
only compensate induced currents caused by rotor motion.

4.4.4 Quantitative results

In this section, quantitative results of proposed �lters and estimators on the simula-
tion of starting phase are presented. For better distinction between cases in which
particle �lter (or regulator) converged to wrong value and cases where estimation
(or regulation) only takes more time, we extend the second phase of the simulation
where desired value of ω is kept constant to 0.3s. Simulation is repeated 1000 times.
In every single simulation, initial state was drawn according to ?? and realizations
of random variables was the same for all tested �lters or regulators.

Quantitative comparison of previously discussed regulators is shown in �gure 4.7.
Obtained histograms states that the CC regulator with added probing term reach
both the lowest tracking loss and estimation error. The most remarkable outline
of the �gure is that the amount of estimation failures signi�cantly decreases, using
modi�ed CC regulator. For estimation, the SIRopt �lter with N = 60, Nthresh =
N/5 = 15, and deterministic variant of residual resampling is used.

As was mentioned before, if the SIRprior and the ASIR �lter are tuned properly, they
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Figure 4.7: Qualitative comparison of di�erent regulators.

propose nearly the same results as the SIRopt �lter. To give an evidence, see ??.
Similar results help us to tune the matrix R̃ = ρR mentioned in previous text � we
can see simulations in which estimation failed as those with estimation error > 2.106.
Increase of robustness and thus decrease of the amount of failures can be done by
increasing the ρ. However, overall estimation error increases. Some compromise
can be reaching be some experiments with these histograms. Consequently, we use
values for ρ mentioned before, 100 for SIRprior and 1000 for ASIR.

In case of the PMSM, computation time for provide estimate is very limiting (only
∆t = 0.000125s). Thus, number of particles should be small, thus we have performed
the same Monte Carlo study for di�erent number of particles. As regulator, the CC
with probing term was used, the state was estimated by SIRopt �lter. Results of the
same simulation for N = 60 are in the last column of �gure 4.7. In the all cases
deterministic variant of residual resampling with Nthresh = N/5 was utilized.
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Figure 4.8: Qualitative comparison of di�erent �lters. Comparable results for the
SIRopt are shown in the �rst part of �gure ??

Figure 4.9: Tracking loss for di�erent numbers of particles (= N). Control actions
are generated by CC regulator CC with probing term.
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Conclusions

The scope of this research project was to study methods of particle �ltering, es-
pecially in framework of controlling under uncertainty. Successful control should
well identify hidden parameters of the system and, by some regulator, to propose
control actions which yields into desired system state. The identify step can be
viewed as sequential estimating problem and its solution using sequential Monte
Carlo method was discussed. On the other hand, regulating step is a variant of
minimization problem. The problem is often analytically unsolvable and, moreover,
also its approximations based on some general idea like dynamic programming or
gradient method are to time consuming. Consequently, we are often tended to use
some more special regulators, e.g the PID, CEC or CC regulator.

After discussing the principles of estimating and controlling in control theory frame-
work, we was interested in application of the methods on model of PMSM. For
the system, several particles �lters was implemented and compared with the EKF.
The best estimation of posterior distribution was proposed by SIRopt, however, also
other particle �lters proved to be able in estimating well. For controlling, the PI,
CC and CEC regulator was implemented and tested. The CC and CEC regulators
was outlined upon speci�c additional conditions which yield into simple and e�ective
control law. During comparison, the most successful regulator was CC with added
probing term. In addition, quantitative results proved that successful estimation
can be achieved using only few particles.

Further research would be to utilize proposed estimation and controlling techniques
on a PMSM model which would better match with real motor. Another direction
would be to propose some general algorithm which would incorporate probing in
controlling, less arti�cial than the presented one. One possibility could be to propose
some extension of the SIDP or stochastic policy gradient algorithm which would be
able to perform time consuming computations more e�ectively and o�ine.
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