Výpočet PCRB

January 5, 2012

PCRB obecně

Výpočet PCRB (Posterior Cramer-Rao Bound) dle [Posterior Cramer-Rao Bounds for Discrete-Time Nonlinear Filtering, 1998, Tichavský P. et al.] jako:

$$P \triangleq \mathsf{E}\left\{\left[g(x) - \theta\right]\left[g(x) - \theta\right]^{T}\right\} \ge J^{-1}$$

kde x reprezentuje vektor měřených dat, θ je vektorový estimovaný náhodný parametr a g(x) je funkce x, která je odhadem θ . J je (Fisherova) informační matice

$$J_{ij} = \mathbb{E}\left[-\frac{\partial^2 \log p_{x,\theta}(X,\Theta)}{\partial \Theta_i \partial \Theta_j}\right]$$

kde $p_{x,\theta}(X,\Theta)$ je sdružená hustota pravděpodobnosti dvojice (x,θ) .

PCRB nelineární filtrace

Spodní mez pro nelineární filtrační problém systému

$$x_{n+1} = f_n(x_n, w_n)$$
$$z_n = h_n(x_n, v_n)$$

kde x_n je stav systému v čase n, z_n je pozorování v čase n, w a v jsou vzájemně nezávislé bílé procesy a f_n a h_n jsou obecně nelineární funkce. Pak je možné počítat rekurzivně posloupnost matic J_n jako:

$$J_{n+1} = D_n^{22} - D_n^{21} \left(J_n + D_n^{11} \right)^{-1} D_n^{12}$$
(1)

kde se matice ${\cal D}_n$ počítají jako

$$D_n^{11} = \mathbf{E} \left\{ -\Delta_{x_n}^{x_n} \log p(x_{n+1} \mid x_n) \right\}$$

$$D_n^{12} = \mathbf{E} \left\{ -\Delta_{x_n}^{x_{n+1}} \log p(x_{n+1} \mid x_n) \right\}$$

$$D_n^{21} = \mathbf{E} \left\{ -\Delta_{x_{n+1}}^{x_n} \log p(x_{n+1} \mid x_n) \right\} = \left(D_n^{12} \right)^T$$

$$D_n^{22} = \mathbf{E} \left\{ -\Delta_{x_{n+1}}^{x_{n+1}} \log p(x_{n+1} \mid x_n) \right\} + \mathbf{E} \left\{ -\Delta_{x_{n+1}}^{x_{n+1}} \log p(z_{n+1} \mid x_{n+1}) \right\}$$
(2)

PCRB Gaussovské

Pro aditivní Gaussovský šum s nulovou střední hodnotou a invertovatelnými kovariančními maticemi Q_n a R_n platí následující vztahy pro výpočet matic D_n jako speciální případ (2):

$$D_{n}^{11} = \mathbf{E}\left\{\left[\nabla_{x_{n}}f_{n}^{T}(x_{n})\right]Q_{n}^{-1}\left[\nabla_{x_{n}}f_{n}^{T}(x_{n})\right]^{T}\right\}$$

$$D_{n}^{12} = -\mathbf{E}\left\{\nabla_{x_{n}}f_{n}^{T}(x_{n})\right\}Q_{n}^{-1}$$

$$D_{n}^{22} = Q_{n}^{-1} + \mathbf{E}\left\{\left[\nabla_{x_{n+1}}h_{n+1}^{T}(x_{n+1})\right]R_{n+1}^{-1}\left[\nabla_{x_{n+1}}h_{n+1}^{T}(x_{n+1})\right]^{T}\right\}$$
(3)

V případě linearity funkcí f_n a h_n pak rekurzivní výpočet matice J_n (1) spolu s dosazením výše uvedených matic D_n (3) odpovídá výpočtu aposteriorní kovarianční matice P_n Kalmanova filtru při označení $(P_n)^{-1} = J_n$. Uvažovaný systém (PMSM) je však nelineární, je tedy užíváno rozšířeného Kalmanova filtru (EKF), ve kterém se do napočtených matic derivací dosazují odhady stavu.

Užité modely

Obecně byly použity čtyři typy modelů v souřadném systému $\alpha\beta$. Souřadný systém dq totiž nemá smysl používat, jelikož mez stále roste, což lze jednak usuzovat na základě tvaru ronvic, ale bylo ověřeno i experimentálně. Tyto modely se liší tím, jestli je uvažován *plný* nebo *redukovaný* stav systému. Dále pak jestli byl uvažován model motoru (PMSM) se stejnými (**Ls**) nebo různými (**Ldq**) indukčnostmi v osách d a q. Budou následovat matice derivací $A_n = [\nabla_{x_n} f_n^T(x_n)]^T$ zobrazení f_n a matice $C_{n+1} = [\nabla_{x_{n+1}} h_{n+1}^T(x_{n+1})]^T$ zobrazení h_{n+1} dle jednotlivých stavových veličin. Tyto matice však budou uvedeny pouze pro případ stejných indukčností.

$$A_{full}^{Ls} = \begin{bmatrix} a & 0 & b\sin\vartheta & b\omega\cos\vartheta \\ 0 & a & -b\cos\vartheta & b\omega\sin\vartheta \\ -e\sin\vartheta & e\cos\vartheta & d & -e\left(i_{\alpha}\cos\vartheta + i_{\beta}\sin\vartheta\right) \\ 0 & 0 & \Delta t & 1 \end{bmatrix}$$
$$C_{full}^{Ls} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
$$A_{red}^{Ls} = \begin{bmatrix} d & -e\left(i_{\alpha}\cos\vartheta + i_{\beta}\sin\vartheta\right) \\ \Delta t & 1 \end{bmatrix}$$
$$C_{red}^{Ls} = \begin{bmatrix} b\sin\vartheta & b\omega\cos\vartheta \\ -b\cos\vartheta & b\omega\sin\vartheta \end{bmatrix}$$

Pro přehlednost je souhrn použitých modelů uveden v následující tabulce:

$\alpha - \beta$	L_s	L_{dq}
full	1	2
red	3	4

Dále pak budou jednotlivé modely oznáčovány jejich číslem z tabulky.

Užitá řízení

Použitá řízení shrnuje následující seznam, dále budou označována svým číslem položky:

1. $\omega = \overline{\omega}, \, \vartheta = \int \omega, \, i_{\alpha} = i_{\beta} = 0$

2. PI

- 3. PI + injektáž sin dod-q
- 4. PI + injektáž obdélníků dod-q

5. PI + injektáž konstanty do d

- 6. PI + náhodná chyba na $\overline{\omega}$
- 7. PI + injektáž sin do $\alpha \beta$
- 8. PI + injektáž obdélníků do $\alpha-\beta$
- 9. PI + bikriteriální metoda se ${\rm sign}\omega$
- 10. PI + bikriteriální metoda náhodný výběr 5 možností

Kovarianční matice

Testování proběhlo s následujícími kovariančními maticemi:

$$Q = \text{diag} \begin{bmatrix} 0.01 & 0.01 & 0.001 & 0.00001 \end{bmatrix}$$

$$R = \text{diag} \begin{bmatrix} 0.005 & 0.005 \end{bmatrix}$$

V případě redukovaných modelů mají odpovídající kovarianční matice tvar:

$$Q_{red} = \operatorname{diag} \left(\begin{bmatrix} Q_{33} & Q_{44} \end{bmatrix} \right)$$
$$R_{red} = R + \operatorname{diag} \left(\begin{bmatrix} Q_{11} & Q_{22} \end{bmatrix} \right)$$

Omezování hodnot meze

Vzhledem k tomu, že poloha ϑ je vyjádřena jako úhel (v radiánech), má smysl ji uvažovat pouze v intervalu $\langle -\pi, \pi \rangle$ (případně s vyloučením jedné z krajních hodnot). V modelu pro výpočet PCRB je však ϑ uvažována jako náhodná veličina s normálním rozdělením, které může nabývat hodnot z celé reálné osy a následně může PCRB nabývat velmi vysokých hodnot. Tyto hodnoty však pro interpretaci ve vztahu k PMSM nemají smysl, protože nejhorší případ (ve smyslu největší neznalosti parametru ϑ) nastává, když je hodnota ϑ rovnoměrně rozdělena v intervalu $\langle -\pi, \pi \rangle$, tj. o hodnotě úhlu natočení ϑ není žádná informace. Proto má smysl uvažovat hodnoty PCRB ϑ jen do velikosti variance

Figure 1: Hodnoty PCRB polohy ϑ v závislosti na amplitudě injektovaného konstantního signálu (viz legenda).

rovnoměrného rozdělení na intervalu $\langle -\pi, \pi \rangle$, tato hodnota je $\frac{\pi^2}{3}$. Nad touto hranicí nemá smysl PCRB ϑ uvažovat a vyšší hodnoty je buď možno oříznout pevnou mezí nebo pomocí výpočtu oříznutého normálního rozdělení, který bude užit dále. Srovnání obou možností je zachyceno na grafech (Figure 1).

Oříznuté normální rozdělení [The Variational Bayes Method in Signal Processing, 2006, Šmídl V., Quinn A.]

 Oříznuté normální rozdělení pro skalární váhodnou veličin
ux je definováno jako normální rozdělení
N (μ,r) na omezeném supportu $a < x \leq b$. Momenty tohoto rozdělení j
sou:

$$\begin{aligned} \hat{x} &= \mu - \sqrt{r} \varphi(\mu, r) \\ \hat{x^2} &= r + \mu \hat{x} - \sqrt{r} \kappa(\mu, r) \end{aligned}$$

kde

$$\begin{aligned} \varphi(\mu, r) &= \frac{\sqrt{2} \left(\exp(-\beta^2) - \exp(-\alpha^2) \right)}{\sqrt{\pi} \left(\operatorname{erf}(\beta) - \operatorname{erf}(\alpha) \right)} \\ \kappa(\mu, r) &= \frac{\sqrt{2} \left(b \exp(-\beta^2) - a \exp(-\alpha^2) \right)}{\sqrt{\pi} \left(\operatorname{erf}(\beta) - \operatorname{erf}(\alpha) \right)} \end{aligned}$$

 \mathbf{a}

$$\alpha = \frac{a-\mu}{\sqrt{2r}}$$
$$\beta = \frac{b-\mu}{\sqrt{2r}}$$

Nyní pro speciální případ $a = -\pi$, $b = \pi$ a $\mu = 0$ je $\alpha = -\frac{\pi}{\sqrt{2r}} = -\beta$. Zřejmě tedy $\alpha^2 = \beta^2$ a čitatel φ je nulový, tedy $\varphi = 0$. Z tohoto pak hned vyplývá, že

 $\hat{x}=0$ a $\mathrm{Var}(x)=\hat{x^2}-\hat{x}^2=\hat{x^2}.\ \kappa$ má po dosazení tvar

$$\kappa = \frac{2\sqrt{2}\pi\exp\left(-\frac{\pi^2}{2r}\right)}{2\sqrt{\pi}\mathrm{erf}\left(\frac{\pi}{\sqrt{2r}}\right)}$$

Hodnota variance x je tedy

$$\operatorname{Var}(x) = r - \sqrt{2\pi r} \frac{\exp\left(-\frac{\pi^2}{2r}\right)}{\operatorname{erf}\left(\frac{\pi}{\sqrt{2r}}\right)}$$

Experimenty

Následující experimenty byly prováděny s ohledem na následující poznatky:

- variance na proudech se ve všech případech ukazovaly jako malé (stále kolem 0.0367) a dále již pak nebyly testovány
- modely pro stejné (Ls) a různé (Ldq) indukčnosti a při uvažování plného a redukovaného modelu lze relativně dobře porovnat při různých řízeních na grafech (Figure 6 a 7)
- nastavení kovariančních matic Q a R nemá vliv na tvar křivek znázorňujících PCRB (neuvažujeme-li ořez), ovlivňuje však značně jejich hodnoty v absolutním měřítku, proto je třeba nastavit dostatečně malé
- hodnoty počáteční kovariance P_0 se projevují pouze na počátku a jejich vliv s rostoucím časem asymptoticky vymizí
- dále je třeba zkoumat především vliv jednotlivých řízení, a tedy i amplitud a případně frekvencí injektovaných signálů

Závislost PCRB ϑ na použité amplitudě přídavného budícího signálu pro PI řízení s konstantní injektáží do osyd

- Testované řízení: "5 PI + injection (const. -> ud)"
- Použitý model: "alpha-beta Ls"
- Injektovaný signál:
 - amplituda: různá, konstantní předmět experimentu
 - frekvence: $\omega_{inj} \equiv 0$, tj. neperiodický konstantní signál
- Kovarianční matice systému:

$$Q = \text{diag} \begin{bmatrix} 0.01 & 0.01 & 0.001 & 0.00001 \end{bmatrix}$$

$$R = \text{diag} \begin{bmatrix} 0.005 & 0.005 \end{bmatrix}$$

Figure 2: Hodnoty PCRB polohy ϑ v závislosti na amplitudě injektovaného konstantního signálu (viz legenda).

- Časový horizont: standartní 120000 vzorků, tj. 15s
- Referenční signál: nulový $\overline{\omega}=0$
- Počáteční kovariance: 1Eye

Výsledné hodnoty PCRB polohy ϑ v závislosti na amplitudě injektáže zachycuje graf (Figure 2).

Porovnání PCRB ϑ pro jednotlivá řízení a užité modely

- Testovaná řízení: 1-10
- Použitý model: plný i redukovaný alpha-beta se stejnými (Ls) i různými (Ldq) indukčnostimi
- Injektovaný signál:
 - amplituda: amp = 10.0
 - frekvence: $\omega_{inj} = 1000$
- Kovarianční matice systému:

$$Q = \text{diag} \begin{bmatrix} 0.01 & 0.01 & 0.001 & 0.00001 \end{bmatrix}$$

$$R = \text{diag} \begin{bmatrix} 0.005 & 0.005 \end{bmatrix}$$

- Časový horizont: standartní 120000 vzorků, tj. 15s
- Referenční signál:
 - -nulový $\overline{\omega}\equiv 0$
- Počáteční kovariance: 1Eye

Výsledné hodnoty PCRB polohy ϑ v závislosti na užitém referenčním signálu a použitém řízení zachycují grafy (Figure 3 a 4). Některé výsledky jsou prakticky totožné, proto z podobných řízení bude zobrazen pouze vybraný zástupce. Hodnota PCRB ϑ je omezována pomocí oříznutého normálního rozdělení na interval $\langle -\pi, \pi \rangle$.

Figure 3: Hodnoty PCRB ϑ dle volby řízení, referenčního signálu a použitého modelu. Ve grafech a) a b) splývají křivky 1 s 2 a 3 s 4, pro g) a h) pak splývá vše (1-4). Čárkovaná přímka představuje limitní hodnotu – varianci rovnoměrného rozdělení na $\langle -\pi, \pi \rangle$.

Figure 4: Hodnoty PCRB ϑ dle volby řízení, referenčního signálu a použitého modelu. V grafech i) až l) splývají křivky pro téměř všechny modely. Čárkovaná přímka představuje limitní hodnotu – varianci rovnoměrného rozdělení na $\langle -\pi, \pi \rangle$.