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Abstract

To address the shortcomings of reinforcement learning (RL) a number of researchers have
focused recently on ways to take advantage of structure in RL problems and on ways to make
domain knowledge part of RL algorithms. In this paper we examine a supervised actor-critic
architecture, whereby a supervisor adds structure to a learning problem and supervised learning
makes that structure part of an actor-critic framework for reinforcement learning. We provide
a steepest descent algorithm for real-valued actions such that the actor adjusts its policy in
accordance with gradient information from both supervisor and critic. We also illustrate the
approach with two kinds of supervisors: a feedback controller that is easily designed yet sub-
optimal, and a human operator providing intermittent control of a simulated robotic arm.
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domain knowledge part of RL algorithms. In this paper we examine a supervised actor-critic
architecture, whereby a supervisor adds structure to a learning problem and supervised learning
makes that structure part of an actor-critic framework for reinforcement learning. We provide
a steepest descent algorithm for real-valued actions such that the actor adjusts its policy in
accordance with gradient information from both supervisor and critic. We also illustrate the
approach with two kinds of supervisors: a feedback controller that is easily designed yet sub-
optimal, and a human operator providing intermittent control of a simulated robotic arm.

1 Introduction

Reinforcement learning and supervised learning are often portrayed as distinct methods of learn-
ing from training examples. Reinforcement learning methods emphasize sequential dynamics and
optimization of a scalar performance objective, with online exploration of the effects of actions.
Supervised learning methods, on the other hand, emphasize static input-output mappings and min-
imization of a vector error signal, with no explicit dependence on how training examples are gath-
ered. As discussed by Jordan and Rumelhart [12] reinforcement learning and supervised learning
differ not so much in the algorithms employed but rather in the nature of the problems solved. The
distinguishing feature is whether feedback from the environment serves as an evaluation signal or
as an error signal, and in this paper, we are interested in problems where both kinds of feedback are
available to a learning system at the same time.

As an example, consider a young child learning to throw a ball. For this motor task, as well as
many others, there is no substitute for ongoing practice. The child repeatedly throws a ball under
varying conditions and with variation in the executed motor commands. Bernstein [5] called this
kind of trial-and-error learning “repetition without repetition.” The outcome of each movement,
such as the visual confirmation of whether the ball reached a nearby parent, acts as an evaluation
signal that provides the child with feedback about the quality of performance—but with no spe-
cific information about what corrections should be made. In addition, the parent may interject error
information in the form of verbal instruction or explicit demonstration of what went wrong with
each preceding throw. In reality, the feedback may be much more subtle than this. For instance,
the final position of the ball reveals some directional information, such as too far to the left or the



right; a learned forward model [12] can then be used to make this corrective information more spe-
cific to the child’s sensorimotor apparatus. Similarly, the tone of the parent’s voice may provide
evaluative praise simultaneously with the verbal error information. In any case, the two kinds of
feedback play interrelated, though complementary roles [2]: The evaluation signal drives skill op-
timization, whereas the error signal provides a standard of correctness that helps ensure a certain
level of performance, either on a trial-by-trial basis or for the learning process as a whole.

To overcome some of the difficulties with reinforcement learning alone, a number of researchers
have proposed the use of supervisory information that effectively transforms a learning problem
into one which is easier to solve. Common examples involve shaping [9, 16, 18], learning from
demonstration [13, 14, 21, 25], or the use of carefully designed controllers [11, 19]. Approaches
that explicitly model the role of a supervisor include Ask FOR HELP [7], RATLE [15], and the
mentor framework [20]. In each case, the goal of learning is an optimal policy, i.e., a mapping
from states to actions that optimizes some performance criterion. Despite the many successful
implementations, none of these approaches combines both kinds of feedback as described shortly.
Either supervised learning precedes reinforcement learning during a separate training phase, or else
the supervisory information is used to modify a value function rather than a policy. Those methods
based on Q-learning [29], for instance, build a value function that ranks the actions available in a
given state. The corresponding policy is then represented implicitly, usually as the action with the
best ranking for each state.

The approach taken in this paper involves an actor-critic architecture for reinforcement learn-
ing [3]. Actor-critic architectures differ from other value-based methods in that separate data struc-
tures are used for the control policy (the “actor”) and the value function (the “critic”). One advantage
of the actor-critic framework is that action selection requires minimal computation [27]. Methods
that lack a separate data structure for the policy typically require a repeated search for the action with
the best value, and this search can become computationally prohibitive, especially for real-valued
actions as with the examples in Section 3.

Another important advantage of the actor-critic framework is that the policy can be modified
directly by standard supervised learning methods. In other words, the actor can change its behavior
based on state-action training pairs provided by a supervisor, without the need to calculate the values
of those training data. The critic is still required for optimization, e.g., [28], whereas the supervisor
helps the actor achieve a level of proficiency whenever the critic has a poor estimate of the value
function. In the next section we describe a supervised actor-critic architecture where the supervisor
supplies not only error information for the actor, but also actions for the environment.

2 Supervised Actor-Critic Architecture

The combination of supervised learning with actor-critic reinforcement learning was first suggested
by Clouse and Utgoff [8] and independently by Benbrahim and Franklin [4]. The approach has
received almost no attention, yet the more general problem of how to combine a teacher with RL
methods has become quite popular. In their work, Benbrahim and Franklin [4] used pre-trained con-
trollers, called “guardians,” to provide safety and performance constraints for a biped robot. Joint
position commands were sent to the robot by a central pattern generator, but those commands were
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Figure 1: The supervised actor-critic architecture.

modified by the guardians whenever a constraint was violated. Superimposed with the joint posi-
tion commands were exploratory actions generated according to Gullapalli’s SRV algorithm [10].
In effect, the central pattern generator learned not only from exploration, but from the guardians as
well.

Figure 1 shows the supervised actor-critic architecture considered in this paper. Taken together,
the actor, the supervisor and the gain scheduler® form a composite actor that sends a composite
action to the environment. The environment responds to this action with a transition from the
current state, s, to the next state, s’. The environment also provides an evaluation of s’ called the
immediate reward, r. The job of the critic is to observe states and rewards and to build a value
function, V(s), that accounts for both immediate and future rewards received under the composite
policy. Temporal-difference (TD) methods [26] are commonly used to update V(s) by an amount
proportional to the TD error, §, where

§=r+~V(s') = V(s),

and ~ € [0,1] is a discount factor.
For deterministic policies and real-valued actions, the gain scheduler computes the composite
action, a, as simply a weighted sum of the actions given by the component policies. In particular,

a«— k(@ +af) + (1 —k)aS,

where a® and aS are the actions from the actor and supervisor, respectively, aF is an exploratory
action, and k € [0, 1] is an interpolation parameter that determines the level of control, or autonomy,
on the part of the actor.? In general, the value of k varies with state, although we drop the explicit
dependence on s to simplify notation.

1Gain scheduling” refers to the construction of a global nonlinear controller by interpolation, or scheduling, of local
linear controllers[23]. We use theterm in a broader sense to mean the blending of two or more sources of control actions.

2For the stochastic case, k gives the probability that the gain scheduler chooses the actor’s action, along with the
exploratory action, rather than the supervisor’s.
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Figure 2: The supervised actor-critic learning algorithm for deterministic policies and real-valued
actions.

The parameter k also plays an important role for modifying the actor’s policy, 7 (s), which maps
states to actions, a®. We assume that 7* is given by a function approximator with the parameter
vector w; for instance, w could be the weights of an artificial neural network. After each state
transition, the parameters of 7 are updated according to the rule

w — w + alkdaF + (1 — k)(a® — a®)|Vur\(s), (1)

where « is a step-size parameter. Eq. (1) summarizes a steepest descent algorithm where k trades
off between two sources of gradient information:® one from a performance surface based on the
evaluation signal, e.g., [10], and one from a quadratic error surface based on the supervisory error,
aS — a®. Figure 2 gives a complete algorithm.

The use of k—a single state-dependent parameter that trades off between two sources of action
and learning—allows for a wide range of interactions between actor and supervisor. If the actor has
control of the gain scheduler, for instance, then the actor can set the value of k near 0 whenever it
needs help from its supervisor, cf. [7]. Similarly, if the supervisor has control of the gain scheduler,
then the supervisor can set k = 0 whenever it loses confidence in the autonomous behavior of the
actor, cf. [15]. The gain scheduler may even be under control of a third party. For example, a linear
feedback controller can play the role of supervisor, and then a human operator can adjust the value
of k as a way to switch between actor and supervisor, perhaps at a longer time scale than that of the
primitive actions.

As mentioned above, the architecture shown in Figure 1 is similar to one suggested previously
by Benbrahim and Franklin [4] and by Clouse and Utgoff [8]. However, our approach is novel in the
following way. In the figure, we show a direct connection from the supervisor to the actor, whereas
the supervisor in both ref. [4] and ref. [8] influences the actor indirectly through its effects on the

3In practice an additional parameter may be needed to scale the TD error. This is equivalent to using two step-size
parameters, one for each source of gradient information.



environment as well as the TD error. Using our notation, the corresponding update equation [4,
Eg. (1)] essentially becomes

w — w + alkdaF + (1 — k)d(a> — a®)| V™ (s). )

The key attribute of Eq. (2) is that the TD error modulates the supervisory error, aS — a®. This may
be a desirable feature if one “trusts” the critic more than the supervisor, in which case one should
view the supervisor as an additional source of exploration. However, Eg. (2) may cause the steepest
descent algorithm to ascend the associated error surface, especially early in the learning process
when the critic has a poor estimate of the true value function. Moreover, when ¢ is small, the actor
loses the ability to learn from its supervisor, whereas in Eq. (1) this ability depends primarily on the
interpolation parameter, k.

3 Examples

In this section we present two examples that illustrate a gradual shift from full control of the envi-
ronment by the supervisor to autonomous control by the actor. In both cases, the supervisor enables
the composite actor in Figure 1 to solve the task on the very first trial whereas the task is virtu-
ally impossible to solve with RL alone. One task is a targeting problem with a heuristic controller
that brings the system to target, although in a sub-optimal fashion. The second example involves a
human supervisor that controls a simulated robot during a peg insertion task.

For both examples we used the learning algorithm in Figure 2 with step-size parameters of
« = 0.1 for the actor and 3 = 0.3 for the critic. To update the critic’s value function, we used
the TD(\) algorithm [26] with A = 0.7. We implemented both actor and critic by a tile coding
scheme, i.e., CMAC [1], with a total of 25 tilings, or layers, per CMAC. One advantage of tile
coding schemes is that each tile acts as a binary feature, and so we easily modified the algorithm in
Figure 2 to take advantage of replacing eligibility traces [24].

3.1 Ship Steering Task

For our first experiment we adapted a standard problem from the optimal control literature where
the task is to steer a ship to a goal in minimum time [6]. The ship moves at a constant speed
of C = 0.01 km - s72, and the real-valued state and action are given, respectively, by the ship’s
two-dimensional position and scalar heading. For this problem, the supervisor is a hand-crafted
controller that always steers directly toward the origin (0, 0). Under full supervision, this strategy
ensures that the ship will reach the goal eventually—but not in minimum time due to a water current
that complicates the task. More specifically, the equations of motion are

Xx=C(cos¢—y), y=Csing, 3)

where ¢ is the ship’s heading, and the water current acts along the horizontal direction, x, yet
depends on vertical position, y. The start location is xo = 3.66, yo = —1.86, and the goal region has
a of radius 0.1 km centered at the origin. A convenient feature of this test problem is that one can
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Figure 3: Ship steering task. The left panel shows the simulator after 1000 learning trials. The
grayscale region indicates the level of autonomy, from k = 0 (white) to k = 1 (black). The right
panel shows the effects of learning for 10 runs. For the supervised learning seed trials the initial
position of the ship was chosen randomly from the region 0 < x <6, -2 <y < 2.

solve for the optimal policy analytically [6], and the dark curve in the left panel of Figure 3 shows
the corresponding optimal path. Under the optimal policy the minimum time to goal is 536.6 s while
the supervisor’s time to goal is 1111 s.

We integrated Eq. (3) numerically using Euler’s method with a step size of 1 s. Control decisions
by the gain scheduler were made every 25 s, at which time the ship changed heading instantaneously.
Exploratory actions, aF, were Gaussian distributed with a standard deviation of 10 degrees. The
CMAC tiles were uniform with a width of 0.5 km along each input dimension. The actor CMAC
was initialized to steer the ship leftward while the critic CMAC was initialized to V(s) = —1000,
for all s. Rewards were —1 per time step, and the discount factor was v = 1, i.e., no discounting.

To make the interaction between supervisor and actor dependent on state, the interpolation pa-
rameter, k, was set according to a state-visitation histogram, also implemented by a CMAC with
25 uniform tilings. At the end of each trial, the weights from the “visited” histogram tiles were
incremented by a value of 0.0008. During each step of the simulation, the value of k was set to the
CMAC output for the current state, with values cut off at a maximum of k = 1, i.e., at full autonomy.
Thus, the gain scheduler made a gradual shift from full supervision to full autonomy as the actor
and critic acquired enough control knowledge to reach the goal reliably. A decay factor of 0.999
was also used to downgrade the weight of each CMAC tile; in effect, autonomy “leaked away” from
infrequently visited regions of state space.

The right panel of Figure 3 shows the effects of learning for each of two cases. One case cor-
responds to the supervised actor-critic algorithm in Figure 2, with the parameter values described
above. The other case is from a two-phase learning process where 1000 trials were used to seed
the actor’s policy as well as the critic’s value function, followed by reinforcement learning alone,
cf. [13, 14, 21, 25]. That is, k = 0O for the first 1000 trials, and k = 1 thereafter. Both cases show
rapid improvement during the first 100 trials of reinforcement learning, followed by slower conver-
gence toward optimality. The two-phase process appears to give much improved performance—if
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Figure 4: Human-robot interface for a simulated peg insertion task after 20 learning trials. The
arrow marks the target slot, and small bars indicate predicted gripper positions under autonomous
control by the actor. (a) After successful re-grasp of the peg, the actor begins movement toward the
middle slot. (b) A momentary correction by the human supervisor places the robot on track for the
upper target, after which (c) the actor completes the sub-task autonomously.

one is willing to pay the price associated with an initial learning phase that gives no immediate
improvement. Indeed, if we examine cumulative reward instead, the roles become reversed with the
two-phase process performing worse.

3.2 Peglnsertion Task

One goal of our ongoing work is to make the techniques described in this paper applicable for teler-
obotics, i.e., for remote operation of a robot by a human supervisor, possibly over great distances.
The human operator is often responsible for setting immediate goals, for managing sub-tasks, for
making coarse-grained motor decisions (e.g., grasp a tool with the palm up rather than down) and
also for executing fine-grained control of the robot. Moreover, these many responsibilities on the
part of the human are just one source of the operator fatigue which hampers the effectiveness of vir-
tually all telerobotic systems. The operator deals not only with a hierarchy of control objectives but
also with limited, and sometimes confusing feedback across the interface between human and ma-
chine. The potential contribution from machine learning is a way to push the human’s involvement
further up the hierarchy as the machine gains competence at each level of control. In particular, a
supervised actor-critic architecture allows the human supervisor to remain “in the loop” as the actor
learns about the details of the robot’s task, especially those details which are difficult to convey
across the user interface, e.g., tactile feedback.

As a preliminary example, Figure 4 shows several snapshots during a simulated peg insertion
task. With no initial control knowledge about the task, the actor is completely dependent upon input
from its human supervisor (via a mouse). After just 5-10 trials, the actor has gathered sufficient
information with which to propose actions. Short bars in the figure depict the effects of such actions,
as projected forward in time by prediction through a kinematic model. In Figure 4(a), for instance,
the bars indicate to the operator that the actor will move the gripper toward the (incorrect) middle



slot. In this scenario, the target slot is hidden state for the actor, and so brief input from the operator
(panel b) is needed to push the actor into the basin of attraction for the upper target. Full autonomy
by the actor is undesirable for this task. The human supervisor remains in control of the robot, while
short intervals of autonomous behavior alleviate much of the operator’s fatigue.

4 Conclusions

Our results thus far suggest that the supervised actor-critic architecture is well-suited for telerobotic
applications, although several key challenges remain. First, our simulated peg insertion task is
somewhat simplified—in terms of the noise-free sensors and actuators, the user interface, the sur-
face contact model, etc.—and so our present efforts are focused on a more convincing demonstration
with a real robot manipulator. Another difficulty is that input from the supervisor can quickly undo
any progress made by the reinforcement learning component. Consequently, we are also explor-
ing principled ways to weaken the effects of the supervised learning aspect without necessarily
weakening the human operator’s control over the robot. A third challenge is related to the way a
human-robot interface introduces constraints during the learning process. For example, the inter-
face may restrict the supervisor’s control of the robot to various subsets of its degrees of freedom.
In turn, this biases the way training data are gathered, such that the actor has difficulty learning to
coordinate all degrees of freedom simultaneously.

Despite the challenges when we combine supervised learning with an actor-critic architecture,
we still reap benefits from both paradigms. From actor-critic architectures we gain the ability to
discover behavior that optimizes performance. From supervised learning we gain a flexible way to
incorporate domain knowledge. In particular, the internal representations used by the actor can be
very different from those used by the supervisor. The actor, for example, can be an artificial neural
network, while the supervisor can be a conventional feedback controller, expert knowledge encoded
as logical propositions, or a human supplying actions that depend on an entirely different perception
of the environment’s state. Moreover, the supervisor can convey intentions and solution strategies
to the actor, and so this work is similar in spirit to work on imitation learning, e.g., [17, 22]. And
presumably the supervisor has a certain proficiency at a given task, which the actor exploits for
improved performance throughout learning.
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