1 Synchronní stroj s permanentními magnety

Jak napovídá název práce, je text zaměřen na řízení synchronních elektrických pohonů. Ze skupiny všech těchto strojů se však zaměřuje pouze na jejich specifickou podskupinu obsahující permanentní magnety. Je tomu tak proto, že oproti synchronním strojům s buzením vykazují synchronní stroje s permanentními magnety celou řadu výhod, teší se stále větší oblibě a nacházejí mnoho aplikací v praxi [27].

1.1 PMSM

Zkratkou PMSM bude v textu označován synchronní stroj s permanentními magnety (Permanent Magnet Synchronous Machine). U tohoto točivého elektrického stroje (motoru) se rotor otáčí stejnou rychlostí, tedy synchronně, jako točivé magnetické pole statoru. Pro generování magnetického pole rotoru je užito místo budícího vinutí permanentních magnetů. Rostoucí praktická aplikace této konstrukce je umožněna především díky snadnější dostupnosti kvalitních permanentních magnetů ze speciálních slitin s velkou magnetickou indukcí oproti klasickým feritovým magnetům [26, 39].

1.1.1 Konstrukce

Přiblížení základní konstrukce PMSM je znázorněno na obrázku 1.1. Nákres je pouze ilustrativní, ale zobrazuje hlavní části PMSM: Vnější kruh představuje stator se zuby, na kterých je navinuto statorové vinutí (v obrázku není zobrazeno). Vnitřní kruh reprezentuje rotor, na jehož povrchu jsou umístěny permanentní magnety s barevně rozlišenými póly.

Často se lze setkat i s opačnou konstrukcí, kdy je stator umístěn uvnitř a rotor s magnety se otáčí kolem něj. Tato konstrukce PMSM naléza využití k pohonu nejrůznějších vozidel, kdy lze motor umístit přímo dovnitř kola vozidla, dalším příkladem je pak přímý pohon bubnu automatické pračky. Existují i však další konstrukce PMSM, například s otočným statorem i rotorem.

Vyobrazená konstrukce (obrázek 1.1) je označováná jako SMPMSM (Surface Mounted PMSM), tedy PMSM s magnety na povrchu. Další častou konstrukcí je IPMSM (Inner PMSM), kde jsou permanentní magnety umístěny uvnitř rotoru. Tyto stroje mají nepatrně odlišné vlastnosti, které ale mají významný vliv při návrhu řízení těchto strojů, detailněji bude rozebráno dále v textu. Pod PMSM se ještě zahrnují reluktanční motory, které jsou založeny na poněkud odlišném principu a nebudeme se jimi v textu zabývat.

Obrázek 1.1: Ilustrativní obrázek konstrukce PMSM: Vnější kruh představuje stator se zuby, na kterých je navinuto statorové vinutí (v obrázku není zobrazeno). Vnitřní kruh reprezentuje rotor, na jehož povrchu jsou umístěny permanentní magnety s barevně rozlišenými póly.

1.1.2 Výhody a nevýhody

Specifická konstrukce PMSM popsaná výše má oproti asynchronním strojům a synchronním strojům s budícím vinutím celou řadu výhod. Má samozřejmě i své nevýhody. Následující přehlded základních odlišností od ostatních střídavých strojů čerpá především ze zdrojů [26, 39, 42].

Výhody

- rotor neobsahuje vinutí a tedy
 - -je možno jej konstruovat menší, což je velmi výhodné v aplikacích, kde záleží na co nejmenší velikosti pohonu
 - je možno jej konstruovat lehčí, což snižuje hmotnost celého zařízení
 - má menší moment setrvačnosti rotoru
 - není třeba složitě přivádět napájení na rotor
 - nedojde k poruše na rotorovém vinutí
- není třeba motor před rozběhem budit a nepotřebuje zdroj budícího proudu
- odpadá problém s přívodem proudu do buzení rotoru
- vyšší účinnost, protože nejsou jouleovy ztráty v:
 - rotoru oproti asynchronnímu stroji
 - buzení oproti synchronnímu stroji s buzením
- momentová přetížitelnost
- možnost konstrukce pomaluběžného stroje s dostatečným výkonem, který nepotřebuje převedovku, a tedy výhody spojené s absencí převodovky

Nevýhody

- technologicky složitější výroba připevnění permanentních magnetů na rotor
- složitější opravy
- vyšší cena z důvodu nezanetbatelných nákladů na permanentní magnety
- menší robustnost
- problematické odbuzování a klesající účinnost při odbuzování
- závislot magnetických vlastností permanentních magnetů na teplotě a tedy nutnost dobrého chlazení
- stálá přítomnost budícího pole v motoru, následně při využití například k pohonu vozidla, dojde-li poruše a následlém odtahu, funguje motor jako generátor
- problematika zkratu, při které může teoreticky dojít až k demagnetizaci permanentních magnetů
- problematika spojená s návrhem řízení těchto strojů

Právě poslední zmiňovaný nedostatek, to jest komplikace při návrhu řízení PMSM a způsoby jak se s tímto nedostatkem vypořádat jsou ústředním tématem této práce.

1.2 Souřadné soustavy pro popis PMSM

K popisu PMSM se užívá dvou kvalitativně zcela rozdílných typů fyzikálních veličin. Jedná se o veličiny mechanické jako poloha (úhel natočení rotoru) a otáčky (rychlost otáčení), dále pak lze uvažovat zátěžný moment nebo tření. Další uvažované veličiny jsou elektrické, především elektrické proudy a napětí, a dále indukčnosti a rezistance.

Elektrické veličiny se nejčastěji uvažují v jednom ze tří souřadných systémů vyobrazených na obrázku 1.2. Souřadný systém a-b-c uvažuje tři osy (a, b, c) ve směru os vinutí jednotlivých fází. Protože však elektrické veličiny v jednotlivých osách systému a-b-cnebývají vzájemně nezávislé a jsou svázány nějakým vztahem, je obvykle využíván popis v soustavě $\alpha - \beta$. Tato souřadná soustava je opět svázána se statorem. Osa α je totožná s osou a, osa β je na osu α kolmá a tvoří tak ortogonální systém. Pro většinu aplikací se však ukazuje výhodným přejít do rotující souřadné soustavy d-q svázené s rotorem. Osa d je pak umístěna ve směru osy permanentního magnetu a směřuje k jeho severnímu pólu, osa q je na ni kolmá.

1.2.1 Transformace souradnic

Žádná z výše zmiňovaných souřadných soustav není univerzálně nejlepší. Pro každý účel se nejlépe hodí jen některá z nich a proto je důležité umět mezi nimi přecházet, tedy převádět jednotlivé veličiny.

Obrázek 1.2: Souřadné systémy používané pro popis PMSM znázorněné na zjednodušeném modelu: na statorové části jsou umístěny pouze tři cívky reprezentující statorová vinutí jednotlivých fází a jako rotor pak slouží jediný permanentní magnet.

Transformace $a - b - c \longleftrightarrow \alpha - \beta$

Tato transformace se označuje také jako Clarkova transformace, rovnice lze nalézt například v [14], případně je možné je poměrně snadno odvodit.

Osa α je totožná s osou a, osy b a c pak uvažujeme oproti ní otočeny o $\pm 120^{\circ}$. Souřadnice v ose α tedy získáme následujícím průmětem z os a, b, c

$$\alpha = k \left(a + b \cdot \cos(120^\circ) + c \cdot \cos(-120^\circ) \right) = k \left(a - \frac{1}{2}b - \frac{1}{2}c \right)$$

kde k značí normovací konstantu $k=\frac{2}{3}$. Obdobně postupujeme v případě osy β . Osa a je na ní kolmá a tedy její příspěvek je nulový. Osy b a c promítnutne do osy β získáme vztah

$$\beta = k \left(b \cdot \sin(120^{\circ}) + c \cdot \sin(-120^{\circ}) \right) = k \left(\frac{\sqrt{3}}{2} b - \frac{\sqrt{3}}{2} c \right)$$

Celkem tedy máme rovnice

$$\alpha = \frac{2}{3} \left(a - \frac{1}{2}b - \frac{1}{2}c \right)$$

$$\beta = \frac{\sqrt{3}}{3} \left(b - c \right)$$

Pro inverzní transformaci platí následující vztahy

$$a = \alpha + \theta$$

$$b = \left(-\frac{1}{2}\alpha + \frac{\sqrt{3}}{2}\beta\right) + \theta$$

$$c = \left(-\frac{1}{2}\alpha - \frac{\sqrt{3}}{2}\beta\right) + \theta$$

kde θ představuje takzvanou nulovou složku $\theta = \frac{1}{3}(a+b+c)$.

Transformace $\alpha - \beta \longleftrightarrow d - q$

Transformace je označována jako Parkova transformace a představuje přechod do rotujícího souřadného systému. Rovnice transformace lze najít opět například v [14], ale jedná se běžnou lineární operaci rotace.

Uvažujeme tedy otočení doustavy d-q oproti $\alpha-\beta$ o úhel ϕ kolem společného počátku souřadných soustav, což vede na převodní vztah

$$\begin{pmatrix} d \\ q \end{pmatrix} = \begin{bmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{bmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
(1.1)

Inverzní transformace je

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{pmatrix} d \\ q \end{pmatrix}$$
 (1.2)

1.3 Model PMSM

Pro tvorbu modelu PMSM vyjdeme z fyzikálních zákonů popisujících hlavní děje odehrávající se v synchronním stroji. Jedná se především o jevy elektrické, mechanické a vzájemnou přeměnu elektrické a mechanické energie. Složitější jevy jako promněnlivost parametrů s teplotou, sycení materiálu magnetickým tokem, případně vliv napájecí elektroniky v tomto modelu uvažovány nebudou. Fyzikální vztahy a zákony pro odvození rovnic PMSM jsou čerpány z [9, 10].

1.3.1 Rovnice pro proudy

Cílem je odvodit rovnice pro PMSM a tedy vyjádřit, jak na sobě hlavní veličiny popisující tento systém navzájem závisejí a jak se vyvýjejí v čase. Vyjdeme ze vztahu pro napětí v obvodu statoru. Statorové napětí u_s uvažujeme zapsané ve souřadné soustavě $\alpha - \beta$ ve smyslu $s = \alpha + j\beta$ (kde j značí komplexní jednotku) a dále uvažujeme, že je obecně funkcí času $u_s = u_s(t)$. Toto napětí lze vyjádřit jako součet napětí souvisejícího s průchodem proudu obvodem a dále jako indukovaného napětí v důsledku elektromagnetické indukce. První z těchto členů lze vyjádřit pomocí Ohmova zákona v závislosti na

proudu. Indukované napětí je na základě Faradayova zákona elektromagnetické indukce rovno změně magnetického toku v čase. Uvažujme tedy, že proud procházející statorem i_s i magnetický tok ve stroji ψ_s zapsaný ve statorové souřadné soustavě jsou opět funkcemi času: $i_s = i_s(t)$ a $\psi_s = \psi_s(t)$. Rovnici pro napětí pak získáme ve tvaru

$$u_s = R_s i_s + \frac{d\psi_s}{dt} \tag{1.3}$$

kde ${\cal R}_s$ je rezistance a předpokládáme ji známou a konstantní.

Nyní je třeba vyjádřit hodnotu magnetického toku ψ_s . Magnetický tok vzniká ve stroji jednak ve statorovém vinutí a dále v důsledku působení permanentních magnetů. Statorové vinutí je z fyzikálního pohledu cívkou a tedy magnetický tok je přímo úměrný proudu procházejícímu touto cívkou: $\psi_s^{civka} = L_s i_s$, kde L_s označuje indukčnost cívky, kterou předpokládáme konstantní, známou a prozatím izotropní. Tok permanentních magnetů označíme jako ψ_{pm} a považujeme jej za známou konstantu. Rotor obsahující permanentní magnety je však obecně natočen a tok permanentních magnetů je směrován pouze do směru osy d. Úhel natočení, označme jej jako ϑ , budeme opět uvažovat jako funkci času $\vartheta = \vartheta(t)$. Rovnice pro celkový magnetický tok ve stroji tedy je

$$\psi_s = L_s i_s + \psi_{pm} e^{j\vartheta} \tag{1.4}$$

kde násobení $e^{j\vartheta}$ představuje zmiňovanou rotaci o úhel ϑ při použití komplexního zápisu.

Když nyní dosadíme rovnici (1.4) pro magnetický tok do rovnice pro napětí (1.3) a provedeme derivaci, získáme

$$u_s = R_s i_s + \frac{d\left(L_s i_s + \psi_{pm} e^{j\vartheta}\right)}{dt} = R_s i_s + L_s \frac{di_s}{dt} + j\psi_{pm} \frac{d\vartheta}{dt} e^{j\vartheta}$$

V této rovnici nově vystupuje veličina $\frac{d\vartheta}{dt}$, kterou označíme jako otáčky

$$\omega = \frac{d\vartheta}{dt} \tag{1.5}$$

Pro obdržení diferenciálních rovnic pro proudy v soustavě $\alpha - \beta$ rozepíšeme zvlášť reálnou a imaginární složku statorove soustavy s ($s = \alpha + j\beta$). Rovnice tedy jsou

$$u_{\alpha} = R_{s}i_{\alpha} + L_{s}\frac{di_{\alpha}}{dt} - \psi_{pm}\omega\sin\vartheta$$
$$u_{\beta} = R_{s}i_{\beta} + L_{s}\frac{di_{\beta}}{dt} + \psi_{pm}\omega\cos\vartheta$$

a případně je možno je upravit na

$$\frac{di_{\alpha}}{dt} = -\frac{R_s}{L_s}i_{\alpha} + \frac{\psi_{pm}}{L_s}\omega\sin\vartheta + \frac{1}{L_s}u_{\alpha}$$

$$\frac{di_{\beta}}{dt} = -\frac{R_s}{L_s}i_{\beta} - \frac{\psi_{pm}}{L_s}\omega\cos\vartheta + \frac{1}{L_s}u_{\beta}$$
(1.6)

Stejné rovnice používají například v [23, 29]. Rovnice v soustavě d - q je z nich možno získat aplikováním transformace popsané rovnicí (1.1).

1.3.2 Rovnice pro otáčky

V odvození rovnic (1.6) byla zavedena veličina ω , viz rovice (1.5), popisující hodnotu otáček (změny polohy) v čase. Má-li být model PMSM úplný, je třeba odvodit rovnici i pro otáčky ω . Protože se jedná o mechanickou veličinu, budeme vycházet ze základních zákonů mechaniky. Nejdříve užijeme vztahu pro točivý moment (torque) T, který budeme považovat za funkci času T = T(t). Točivý moment lze vyjádřit jako $T = \frac{dl}{dt}$, kde l značí moment hybnosti (angular momentum). Pro ten dále platí $l = J\omega_{mech}$, kde J označuje moment setrvačnosti (moment of inertia) a předpokládáme ho jako známou konstantu, ω_{mech} jsou mechanické otáčky. Mechanické otáčky odpovídají skutečnému otáčení stroje a liší se od otáček elektrických ω vystupujících v rovnicích (1.6) pro proudy a jejich odvození. Vztah těchto dvou typů otáček je dán rovnicí

$$\omega = p_p \omega_{mech} \tag{1.7}$$

kde hodnota p_p představuje počet párů pólů (tedy polovina počtu pólů) permanentních magnetů stroje.

Dalším důležitým poznatkem je, že při působení více točivých momentů se tyto mementy sčítají a tedy platí

$$T_1 + \ldots + T_n = \frac{dl}{dt} = \frac{d(J\omega_{mech})}{dt} = J\frac{d\omega_{mech}}{dt}$$
(1.8)

Jednotlivé uvažované točivé momenty ${\cal T}_i$ jsou:

- 1. moment získaný konverzním procesem elektrické energie, který vyjadřuje hlavní vlastnost elektrického motoru převod elektrické energie na mechanickou: $T_1 = T_{el}$
- 2. zátěžný moment reprezentující zatížení stroje, tedy to, co je motorem poháněno; působí však v opačném směru (proti pohybu): $T_2 = -T_L$
- 3. moment v důsledku tření (ztráty ve stroji), působí opět proti pohybu a uvažujeme jej lineárně závislý na otáčkách s koeficientem viskozity (tření) $B: T_3 = -B\omega_{mech}$

Celkem tedy rovnice (1.8) po dosazení konkrétních momentů přejde na

$$T_{el} - T_L - B\omega_{mech} = J \frac{d\omega_{mech}}{dt}$$
(1.9)

Zátěžný moment T_L sice uvažujeme obecně proměnný v čase, ale vzhledem k tomu, že představuje externí zátěž stroje, není možnost jej jakkoliv předvídat, popřípadě vhodně vyjádřit na základě jiných veličin. V rovnicích tedy bude nadále vystupovat pod označením T_L a budeme jej považovat za neznámou funkci času.

Moment T_{el} však je možno vyjádřit na základě elektrických veličin. Využijeme k tomu výpočet přes okamžitý výkon. Ten je pro trojfázový systém (v souřadnicích a - b - c) roven $P = u_a i_a + u_b i_b + u_c i_c$. Po provedení transformace do souřadnic $\alpha - \beta$ je vyjádřen ve tvaru

$$P = k_p \left(u_\alpha i_\alpha + u_\beta i_\beta \right) \tag{1.10}$$

kde k_p značí Parkovu konstantu s hodnotou $k_p = \frac{3}{2}$. Jako napětí zde uvažujeme indukované napětí u_{ind} , to jest druhý člen v rovnici (1.3), protože první člen této rovnice je napětí, které se podílí na tepelném výkonu stroje – ztrátách. Tedy pro indukované napětí platí, viz rovnice (1.3) a (1.4):

$$u_{ind} = \frac{d\psi_s}{dt} = \frac{d\left(L_s i_s + \psi_{pm} e^{j\vartheta}\right)}{dt} = L_s \frac{di_s}{dt} + j\psi_{pm}\omega e^{j\vartheta}$$

Z indukovaného napětí navíc využijeme pouze složku reprezentovanou druhým výrazem, protože první složka obsahující derivace proudů slouži k tvorbě samotného magnetického pole stroje a nepodílí se na tvorbě výkonu. Následně v souřadném systému $\alpha - \beta$ získáme vyjádření indukovaných napětí podílejících se na výkonu jako

$$u_{ind,\alpha} = -\psi_{pm}\omega\sin\vartheta$$
$$u_{ind,\beta} = \psi_{pm}\omega\cos\vartheta$$

a po dosazení do (1.10) je

$$P = k_p \left(-\psi_{pm} i_\alpha \omega \sin \vartheta + \psi_{pm} i_\beta \omega \cos \vartheta \right) \tag{1.11}$$

Okamžitý výkon lze také vyjádřit z mechanických veličin jako

$$P = \omega_{mech} T_{el} \tag{1.12}$$

a dosazením z (1.11) již získáme vyjádření pro mement T_{el} ve tvaru:

$$T_{el} = \frac{P}{\omega_{mech}} = \frac{k_p}{\omega_{mech}} \left(-\psi_{pm} i_\alpha \omega \sin \vartheta + \psi_{pm} i_\beta \omega \cos \vartheta \right)$$

což lze pomocí vztahu (1.7) upravit na

$$T_{el} = k_p p_p \left(-\psi_{pm} i_\alpha \sin \vartheta + \psi_{pm} i_\beta \cos \vartheta \right)$$

Stejnou rovnici pro moment T_{el} používají například v [23]. Dosazení do rovnice (1.9) pak vede na tvar

$$k_p p_p \psi_{pm} \left(-i_\alpha \sin \vartheta + i_\beta \cos \vartheta \right) - T_L - B\omega_{mech} = J \frac{d\omega_{mech}}{dt}$$

Tuto rovnice lze opět užitím vztahu (1.7) upravit tak, aby v ní vystupovali elektrické otáčky ω a dále z rovnice vyjádřit jejich derivaci

$$\frac{d\omega}{dt} = \frac{k_p p_p^2 \psi_{pm}}{J} \left(i_\beta \cos\vartheta - i_\alpha \sin\vartheta \right) - \frac{p_p}{J} T_L - \frac{B}{J} \omega \tag{1.13}$$

Rovnici pro otáčky v této podobě (1.13) lze nalézt například v [29].

1.3.3 Rovnice pro proudy při různých indukčnostech

Pro použití s některými, především injektážními, metodami je do modelu PMSM třeba zahrnout anizotropie, které následně usnadní odhadování polohy. Možností, jak zavést anizotropie je uvažování různých indukčností v osách d a q. Tyto osy jsou svázány s rotorem a tedy i s permanentními magnety na něm, viz obrázek 1.2. Tok permanentních magnetů interaguje s cívkami statoru a mění jejich vlastnosti, což vede právě na rozdílné indukčnosti v osách d a q. Tedy místo jediné izotropní L_s nyní uvažujeme různé $L_d \neq L_q$, nadále je však považujeme za známé konstanty. Postup odvození rovnic bude analogický předchozímu odvození pro stejné indukčnosti s tím rozdílem, že bude užito soustavy d-q. Opět vyjdeme z rovnice (1.3), kde za veličiny ve statorové souřadné soustavě dosadíme veličiny v soustavě d-q otočené o úhel ϑ . Tedy

$$u_{dq}e^{j\vartheta} = R_s i_{dq}e^{j\vartheta} + \frac{d\left(\psi_{dq}e^{j\vartheta}\right)}{dt}$$

a po zderivování

$$u_{dq}e^{j\vartheta} = R_s i_{dq}e^{j\vartheta} + \frac{d\psi_{dq}}{dt}e^{j\vartheta} + j\psi_{dq}\omega e^{j\vartheta}$$

Nyní je možné zkrátit člen $e^{j\vartheta}$ představující rotaci a získáme rovnici pro napětí ve tvaru

$$u_{dq} = R_s i_{dq} + \frac{d\psi_{dq}}{dt} + j\psi_{dq}\omega \tag{1.14}$$

Magnetický tok v osách d-q je vyjádřen podobně, jako pro stejné indukčnosti, jako součet toku indukovaného cívkami a toku permanentních magnetů, tedy

$$\psi_d = L_d i_d + \psi_{pr}$$

 $\psi_q = L_q i_q$

protože tok permanentních magnetů uvažujeme pouze ve směru osy d. Po dosazení vztahů pro toky do rovnice (1.14) a jejím rozepsání do jednotlivých os (d odpovídá reálné a q imaginární ose v komplexním vyjádření) získáme rovnice

$$u_d = R_s i_d + L_d \frac{di_d}{dt} - L_q i_q \omega$$

$$u_q = R_s i_q + L_q \frac{di_q}{dt} + (L_d i_d + \psi_{pm}) \omega$$

Opět je možno vyjádřit derivace proudů a získat rovnice pro
 proudy v soustavěd-qve tvaru

$$\frac{di_d}{dt} = -\frac{R_s}{L_d}i_d + \frac{L_q}{L_d}i_q\omega + \frac{1}{L_d}u_d$$

$$\frac{di_q}{dt} = -\frac{R_s}{L_q}i_q - \frac{L_d}{L_q}i_d\omega - \frac{\psi_{pm}}{L_q}\omega + \frac{1}{L_q}u_q$$
(1.15)

Tyto rovnice používají například v [8, 15, 16]. Rovnice pro proudy v soustavě $\alpha - \beta$ lze získat transformováním rovnic (1.15) pomocí vztahu (1.2), tyto rovnice však již mají poměrně dosti komplikovaný zápis.

1.3.4 Rovnice pro otáčky při různých indukčnostech

Postup odvození rovnice pro otáčky při uvažování různých indukčností je opět podobný jako v případě stejných indukčností. Pro momenty platí opět rovnice (1.9):

$$T_{el} - T_L - B\omega_{mech} = J \frac{d\omega_{mech}}{dt}$$

kde T_{el} vypočteme přes okamžitý elektrický výkon. Užijeme tedy rovnice (1.10) a provedeme transformaci souřadnic danou vztahem (1.2):

 $P = k_p (u_{\alpha} i_{\alpha} + u_{\beta} i_{\beta})$ = $k_p ((u_d \cos \vartheta - u_q \sin \vartheta) (i_d \cos \vartheta - i_q \sin \vartheta) + (u_q \cos \vartheta + u_d \sin \vartheta) (i_q \cos \vartheta + i_d \sin \vartheta))$ = $k_p (u_d i_d + u_q i_q)$

Nyní za napětí dosadíme indukovaná napětí bez složek obsahující derivace proudů, tedy

$$u_{ind,d} = -L_q i_q \omega$$

$$u_{ind,q} = (L_d i_d + \psi_{pm}) \omega$$

a následně po dosazení do rovnice pro výkon získáme

$$P = k_p \left(\left(L_d - L_q \right) i_d i_q + \psi_{pm} i_q \right) \omega$$

Výsledkem užitím vztahu pro okamžitý výkon P a moment T_{el} , viz rovnice (1.12), a převodního vztahu pro otáčky (1.7) je rovnice

$$T_{el} = k_p p_p \left(\left(L_d - L_q \right) i_d i_q + \psi_{pm} i_q \right)$$

a po dosazení do rovnice pro momenty (1.9), užití převodního vztahu pro otáčky (1.7) a vyjádření derivací získáme rovnici pro otáčky ve tvaru

$$\frac{d\omega}{dt} = \frac{k_p p_p^2}{J} \left(\left(L_d - L_q \right) i_d i_q + \psi_{pm} i_q \right) - \frac{p_p}{J} T_L - \frac{B}{J} \omega$$
(1.16)

který lze rovněž najít v [8, 16].

1.3.5 Shrnutí rovnic pro PMSM

Nyní bude pro přehlednost uvedeno shrnutí výše odvozených rovnic popisujících PMSM. Nejdříve soustava rovnic v souřadnicích $\alpha - \beta$ při uvažování stejných indukčností, tedy rovnice (1.6), (1.13) a (1.5):

$$\frac{di_{\alpha}}{dt} = -\frac{R_s}{L_s}i_{\alpha} + \frac{\psi_{pm}}{L_s}\omega\sin\vartheta + \frac{1}{L_s}u_{\alpha}$$

$$\frac{di_{\beta}}{dt} = -\frac{R_s}{L_s}i_{\beta} - \frac{\psi_{pm}}{L_s}\omega\cos\vartheta + \frac{1}{L_s}u_{\beta}$$

$$\frac{d\omega}{dt} = \frac{k_p p_p^2 \psi_{pm}}{J} \left(i_{\beta}\cos\vartheta - i_{\alpha}\sin\vartheta\right) - \frac{p_p}{J}T_L - \frac{B}{J}\omega$$

$$\frac{d\vartheta}{dt} = \omega$$
(1.17)

Následuje soustavě pro různé indukčnosti L_d a L_q v souřadné soustavě d - q vzniklá spojením rovnic (1.15), (1.16) a (1.5):

$$\frac{di_d}{dt} = -\frac{R_s}{L_d}i_d + \frac{L_q}{L_d}i_q\omega + \frac{1}{L_d}u_d$$

$$\frac{di_q}{dt} = -\frac{R_s}{L_q}i_q - \frac{L_d}{L_q}i_d\omega - \frac{\psi_{pm}}{L_q}\omega + \frac{1}{L_q}u_q$$

$$\frac{d\omega}{dt} = \frac{k_p p_p^2}{J}\left(\left(L_d - L_q\right)i_di_q + \psi_{pm}i_q\right) - \frac{p_p}{J}T_L - \frac{B}{J}\omega$$

$$\frac{d\vartheta}{dt} = \omega$$
(1.18)

1.4 Mechanické veličiny a senzory

Jak je patrné z výše odvozeného modelu PMSM, když chceme stroj dobře řídit, je potřeba znát s dostatečnou přesností fyzikální veličiny, které zachycují jeho stav v daném časovém okamžiku. Jako tyto veličiny v základu volíme elektrické proudy a napětí a dále pak polohu rotoru a rychlost jeho otáčení. Získat dostatečně přesné hodnoty těchto veličin však není vždy zcela jednoduché.

U elektrických proudů na výstupu stroje předpokládáme, že je měříme s dostatečnou přesností. Elektrická napětí na vstupu předpokládáme známá, protože se obvykle jedná o řídící veličiny. Je však třeba poznamenat, že napětí požadovaná řídícím algoritmem a skutečná napětí dodaná napájecí elektronikou se mohou často značně lišit. Vliv tohoto konkrétního problému bude podrobněji diskutován dále v textu.

Získání hodnot mechanických veličin v reálném čase je v praxi mnohem komplikovanější. Je totiž třeba užít speciálních senzorů jako například: pulzní snímače na principu vhodného kódu [26], Hallovy senzory [21] nebo rezolvery [17, 26]. Pro praktické aplikace je však třeba ekonomických, robustních a kompaktních motorů a využití senzorů přináší obecně mnoho nevýhod jako například [27, 42]:

- větší hardwarová složitost zařízení, více vodičů, sběrnic a konektorů, větší rozměry
- vyšší cena, vliv na životní cyklus výrobku
- menší spolehlivost a menší odolnost proti šumu
- nutno řešit negativní vlivy na senzory: elektromagnetické pole, oscilace, vysoké rychlosti a teploty
- vyšší nároky na údržbu
- menší robustnost, problém při selhání senzoru, je-li motor současně využíván i jako brzda [41]

Je tedy snahou se užití senzorů vyhnout a k určování polohy a otáček rotoru využít jiných, *bezsenzorových*, metod. Ty jsou obvykle založeny na speciálním algoritmu, který odhaduje hodnoty mechanických veličin z hodnot veličin elektrických.

S bezsenzorovými metodami byly na počátku spojeny problémy s výpočetní náročností. To se však změnilo s dostupností moderních výkoných elektronických prvků umožňujících implementaci náročnějších algoritmů a tím byl umožněn rozvoj bezsenzorového řízení. V posledních letech tak byl současně v akademické i průmyslové sféře odstartován intenzivní výzkum na poli pokročilých řídících strategií. Pro komerční průmyslovou aplikaci je však bezsenzorový návrh rozumný, jen pokud se neprodraží více než původně uvažované senzory. Nelze tedy bezsenzorový návrh příliš usnadnit přidáním dalších elektrických senzorů (napříkad napěťových), užití nejvýkonějších dostupných procesorů, případně požadavkem na jinou nebo speciální konstrukci samotného motoru [27].

1.5 Metody pro odhadování stavových veličin PMSM

K odhadování stavových veličin PMSM v bezsenzorovém návrhu je možno přistupovat z různých směrů a lze při tom využít mnoha specifických jevů. V důsledku toho byla vyvinuta celá řada více či méně uspěšných metod. Následující přehled čerpá svoji osnovu z [42], ta je dále doplněna o konkrétní příklady z dalších zdrojů.

1.5.1 Metody založené na otevřené smyčce

Přímý výpočet

Požadované veličiny (poloha a otáčky) jsou přímo vyjádřeny a vypočteny z rovnic popisujících PMSM. Jedná se o přímočarou a jednoduchou metodu s velmi rychlou dynamickou odezvou. Není třeba užití komplikovaného pozorovatele, nicméně metoda je velmi citlivá na chyby měření, šum a nepřesné určení parametrů stroje.

Příkladem může být následující postup při použití rovnic (1.17) v souřadné soustave $\alpha - \beta$: Vyjdeme z

$$\frac{di_{\alpha}}{dt} = -\frac{R_s}{L_s}i_{\alpha} + \frac{\psi_{pm}}{L_s}\omega\sin\vartheta + \frac{1}{L_s}u_{\alpha} \frac{di_{\beta}}{dt} = -\frac{R_s}{L_s}i_{\beta} - \frac{\psi_{pm}}{L_s}\omega\cos\vartheta + \frac{1}{L_s}u_{\beta}$$

vyjádříme

$$\varepsilon_{\alpha} = \omega \sin \vartheta = \frac{L_s}{\psi_{pm}} \frac{di_{\alpha}}{dt} + \frac{R_s}{\psi_{pm}} i_{\alpha} - \frac{1}{\psi_{pm}} u_{\alpha}$$
$$\varepsilon_{\beta} = \omega \cos \vartheta = -\frac{L_s}{\psi_{pm}} \frac{di_{\beta}}{dt} - \frac{R_s}{\psi_{pm}} i_{\beta} + \frac{1}{\psi_{pm}} u_{\beta}$$

a na závěr vypočteme

$$\begin{aligned} |\omega| &= \sqrt{\varepsilon_{\alpha}^2 + \varepsilon_{\beta}^2} \\ \vartheta &= \arctan \frac{\varepsilon_{\alpha}}{\varepsilon_{\beta}} \end{aligned}$$

Výpočet statorové indukčnosti

Používá se pro IPMSM, kde indukčnost statorových fází je funkcí polohy rotoru. Poloha rotoru je tedy vypočtena z napětí a proudu ve statorové fázi. Problémy nastavají v důsledku nepřesného výpočtu indukčnosti a dále při saturaci magnetickým tokem, kdy metoda poskytuje špatné výsledky.

Integrace zpětné elektromotorické síly

Metoda využíva toho, že v synchronním stroji rotuje statorový a rotorový tok synchronně a tedy ze znalosti statorového toku lze vypočítat, na základě rovnic stroje, úhel rotorového toku, tedy polohu hřídele. Problém tohoto přístupu je především v citlivosti na chyby a (především teplotní) změny rezistance statoru. Dále metoda funguje špatně při nízkých otáčkách.

Rozšířená elektromotorická síla

Jedná se především o rozšíření konceptu zpětné elektromotorické síly na IPMSM, kde navíc vystupují rozdílné indukčnosti. Umožňuje tedy užití metod pro SMPMSM založených na EMF i pro IPMSM.

1.5.2 Metody s uzavřenou smyčkou

Rozšířený Kalmanův filtr

Tato metoda poskytuje ve srovnání s ostatními velmi dobré výsledky, je méně ovlivněna šumem měření a nepřesností parametrů. Je asi nejpoužívanějším nelineárním pozorovatelem pro odhadování stavových veličin PMSM. Popis jeho aplikace lze naléz například v [5, 6, 7, 29]. Problematičtější je nutnost vhodné volby kovariančních matic. Dále je třeba vhodně vyřešit problém s konvergencí ke špatnému řešení (symetrie (ω, ϑ) a ($-\omega, \vartheta + \pi$)). Postup je také problematičtější pro IPMSM s různými indukčnostmi. Dalšími nevýhodami jsou vyšší výpočetní a časová náročnost. Detailnímu popisu algoritmu rozšířeného Kalmanova filtru a jeho následné aplikaci na PMSM bude věnována zvláštní pozornost dále v textu (část 1.6.1) a (**odkaz**).

MRAS

Algoritmus využívá redundance dvou různých modelů stroje k určení stejných veličin z jiné množiny vstupů. Chyba mezi estimovanými veličinami jednotlivých modelů je pak úměrná úhlovému posunu mezi dvěma odhadovanými vektory toku. Tato chyba je pak obvykle minimalizována PI regulátorem. Příkladem je využití napěťového modelu a proudového modelu k určení chyby toku, ze které je určena rychlost. Jinou možností je užít jako jeden z modelů samotný PMSM. Nevýhodou je silná závislost na přesnosti parametrů stroje.

Jednoduché adaptivní řízení

Návrh pro případ známé velikosti toku permanentních magnetů. Výhodou je zvládnutí kompenzace konstantní posun napětí, avšaj má problémy při nízkých otáčkách.

Klouzavý pozorovatel (sliding mode observer)

Přístup zajišťuje nulovou chybu odhadovaného statorového proudu. Dále pak rekonstruuje zpětnou elektromotorickou sílu a vypočítává z ní polohu rotoru. Opět má problémy při nízkých otáčkách. Existuje i iterativní verze klouzavého pozorovatele, viz například [19].

1.5.3 Metody založené na neideálních vlastnostech motoru

Odstraňují kritickou závislost na velikosti zpětné elektromotorické síly úměrné otáčkám stroje.

Vyskofrekvenční (HF) injektáž

Metoda je založena na vlastnosti magnetických "výčnělků" (saliency) především u IPMSM, případně na lokálních anizotropiích v důsledku saturace magnetickým tokem typicky pro SMPMSM. Detailněji se základní metodou injetkáže zabývají v [4, 17, 18].

Injektovaný signál je přiváděn na vstup stroje spolu s řízením. Generuje točivé nebo střídavé pole ve specifickém, předem určeném prostorovém směru. Tyto dva rozdílné přístupy jsou také označovány jako "rotující napěťový vektor" a "pulzující napěťový vektor" v tomto pořadí. Jejich srovnání a aplikaci na oba typy PMSM (SM a I) lze nalézt v [3, 20].

Přídavný injektovaný signál je označován jako "nosný" a je periodický na nosné frekvenci vzhledem k času nebo prostoru. Nosný signál je modulován aktuální prostorovou orientací anizotropií stroje a následně signál je následně extrahován z výstupu stroje a demodulován. Tím postupem je obecně získávána hodnota úhlu natočení.

Výhodné je injektovat do d osy, kde nedochází k rušení momentu. Dále injektáží do d osy lze užít saturace tokem pro motory s nevýraznými výstupky, to však není vhodné pro aplikace při silném zatížení. Další možností je injektovat ve statorových souřadnicích $\alpha - \beta$.

Výhodou injektáží je necitlivost k nepřesné znalosti parametrů stroje. Například články [24, 25] představují injektážní metodu, která nepotřebuje znát parametry stroje. V případě [25] se navíc snaží kompenzovat i negativní vliv invertoru a rozšířit schopnost detekce anizotropií i na velmi malé nepravidelnosti typické pro SMPMSM. Nevýhodou je spotřeba jistého množství napětí, což snižuje dostupné maximální napětí. Dalším nedostatekem je užití digitálních filtrů pro zpracování a špatný dynamický výkon v důsledku jejich užití.

Injektáž velmi vysokých frekvencí

Tento relativně nový postup prezentovaný v [30] nedetekuje anizotropie v důsledku saturace případně anizotropie samotného rotoru rotoru. Místo toho je založena na neideálních vlastnostech (anizotropiích) samotných permanentních magnetů. Z tohoto důvodu ji lze využít v případech kdy ostatní metody selhávají, například z důvodu nepřítomnosti klasických anizotropií. Pro správnou funkčnost metoda je však nutné užití velmi vysokých frekvencí v řádu stovek *kHz*. Nevýhodou je nutnost volby optimální hodnoty frekvence specificky pro konkrétní typ magnetu. Dále pak to, že se jedná o relativně novou metodu, která zatím není detailněji prozkoumána.

Nizkofrekvenční (LF) injektáž

Injektování nízké frekvence do d osy. To způsobí změnu v otáčkách indikující chybu odhadu. Z ní je pak možné odhadnout polohu. Založeno na jiném principu než vysoko-frekvenční injektáže a výstupky již nejsou nutnou podmínkou pro tuto metodu. Funkčnost závisí na momentu setrvačnosti stroje a pro jeho velké hodnoty selháva. Dalším nedostatkem je pomalá dynamická odezva.

INFORM (Indirect flux detection by on-line reactance measurement)

Použití pro určení polohy PMSM při nízkých a nulových otáčkách. Založeno na měření proudové odezvy vyvolané napěťovým vektorem aplikovaným v různých prostorových směrech a užitím tohoto proudu k identifikaci změny induktance. Výhodou je jednoduchý výpočet a dále není třeba rovnic pro motor. Tedy metoda je necitlivá na změnu/nepřesné hodnoty parametrů. Je však citlivá na chyby toku způsobující špatný odhad. Dále tato metoda způsobuje rušení proudů v ustáleném stavu.

1.5.4 Detekce počáteční polohy

Pro hladký start PMSM je třeba znát počáteční polohu. Obvykle je užito vhodné excitace stroje k získání informace o poloze.

Užití impulzního napětí

Postup je založen na sycení a změně indukčnosti statoru s pozicí magnetů na rotoru. Za klidu jsou do statorových fází aplikovány napěťové pulzy a z proudů je následně vupočítána informace o poloze. Příkladem může být technika představená v [34], která nevyžaduje znalost parametrů stroje a je možno ji aplikovat i na SMPMSM.

Testovací napěťové vektory

Napěťové vektory v různých prostorových směrech jsou aplikovány do stroje a je měřena proudová odezva. Nejvyšší odezva pak indikuje pozici rotoru. Funkčnost metody je založena na saturaci statorového jádra.

Vysokofrekvenční (HF) testovací signál

Počáteční poloha je získávána z odezvy na injektovaný proudový nebo napěťový vysokofrekvenční signál.

1.5.5 Kombinace metod

Vzhledem k tomu, že každá z výše uvedených metod má své nedostatky, nejlepších výsledků je dosahováno jejich vhodnou kombinací. Kombinování metod má však i své nedostatky: Obecně komplikuje celý návrh a ten se stává složitějším. Dalším problémem je nutnost řešit správné napojední jednotlivých kombinovaných metod.

V [5] představují bezsenzorové řízení založené na EKF estimátoru ve spojení s PI regulátory. To nepotřebuje znát počáteční natočení rotoru a zátěžný moment. PI regulátor napětí lze nastavit se zamčeným rotorem a je řešen i problém s rozpoznáním sign ω .

Článek [6] je také zaměřen na využití EKF, nyní však v případě IPMSM. Návrh je komplikovanější v důsledku uvažování anizotropií stroje, autoři se ji však snaží využít k vylepšení výkonu systému.

V [38] využívají řízení založené na klouzavém pozorovateli, kde si ale navíc při nízkých otáčkách $\omega \approx 0$ pomáhají injektováním stejnosměrného proudu do *d* osy. Nevyužívají však anizotropií ani nijak zvlášť neanalyzují injektovaný signál.

Hybridní metody s injektáží

Jako hybridní metody budou v textu označovány kombinace nejčastěji používaných přístupů pro PMSM, tedy injektážních a technik založených na zpětné elektromotorické síle. Užití injektáží je vhodné pro nízké a nulové otáčky, zatímco ve vyšších rychlostech způsobuje nežádoucí rušení. Oproti tomu přístupy využívající zpětnou elektromotorickou sílu fungují pří vyšších otáčkách dobře a pro nízké selhávají. Je tedy nasnadě oba typy metod vhodným způsobem zkombinovat a získat tak způsob jak odhadovat stavové veličiny v celém rozsahu rychlostí stroje. Základní idea tedy je pří nízkých otáčkách využívat odhadů z injektáží a při zvýšení otáček injektáže vypnout, aby nezpůsobovali rušení a dále se řídit jen na zákledě odhadů ze zpětné elektromotorické síly. Tento postup je použit v [32], kdy jako estimátor používají adaptivního pozorovatele s referenčním modelem, který je pro nízké otáčky doplněn základním návrhem injektáže.

Důležitou součástí těchto metod je způsob, jakým se vyřeší "bezproblémový" přechod z jednoho estimátoru na jiný. V [36] je to například řešeno tak, že stále užívají estimátor rotorového toku založený na indukovaných napětích. V nízkých otáčkách je pak doplňován injektáží, ta s rostoucími otáčkami postupně vymizí. Obdobně v [31] je užit estimátor založený na napěťovém modelu, v nízkých otáčkách je přidána vysokofrekvenční injektáž. Amplituda injektáže s rostoucími otáčkami lineárně klesá a navíc je nad určitou mezní rycholostí úplně vypnuta.

Hybridní metody jsou samozřejmě dále vylepšovány. Například v [33] uzpůsobojí standartní hybridní metodu, zejména její injektážní část, aby fungovala i s invertorem vybaveným na výstupu LC filtrem. Toho se užívá zejména k odstranění problému ve střídavých strojích v důsledku napájení nesinusovým napětím z invertoru s pulzně šířkovou modulací.

Více modelů

sekvenční Monte Carlo metoda – Particle Filter

1.6 Doplňky

1.6.1 Rozšířený Kalmanův filtr

Pro úplnost je zde uvedena základní formulace v textu často zmiňovaného rozšířeného Kalmanova filtru (Extended Kalman Filter, EKF). Typicky je algoritmus standartního Kalmanova filtru používán jako pozorovatel lineárního systému. Je však možno jej zobecnit i pro nelineární systémy a pak hovoříme o rozšířeném Kalmanově filtru. Zobecnění je založeno na jednoduché myšlence, kdy původní nelineární systém linearizujeme v každém časovém kroku v okolí odhadu, střední hodnoty a kovariance. Popis standartního Kalmanova filtru je možno nalézt v [2]. Následující popis rozšířeného Kalmanova filtru je převzat z (citace):

Modelový systém

Předpokládejme nelineární dynamický systém s aditivním šumem popsaný rovnicemi

$$\begin{aligned} x_t &= f(x_{t-1}, u_{t-1}) + w_{t-1} \\ y_t &= h(x_t) + v_t \end{aligned}$$

pro $t = 1, \ldots, T$, kde x_t je vektor stavu, u_t vektor řízení, y_t vektor pozorování (měření) a vektory v_t a w_t představují na sobě vzájemně nezávislý Gaussovský bílý šum s nulovou střední hodnotou a kovariančními maticemi R_t a Q_t v tomto pořadí; obecně nelineární funkce f představuje funkci systému a h funkci měření a předpokládáme je známé.

Označme nyní A Jacobiho matici parciálních derivací f dle x v bodě odhadu, tedy $(A_t)_{ij} = \frac{\partial f_i}{\partial x_j} (\hat{x}_{t-1}, u_{t-1}, 0)$. Obdobně pro funkci h označme C matici derivací $(C_t)_{ij} = \frac{\partial h_i}{\partial x_j} (\bar{x}_t, 0)$, kde \tilde{x}_t představuje aproximaci stavu vypočtenou z odhadu bez šumu $\tilde{x}_t = f(\bar{x}_t, u_{t-1}, 0)$.

Algoritmus

Samotný algoritmus EKF můžeme rozdělit na dvě fáze. V první označované jako časová oprava (time update) nebo také *predikce* se vypočítá apriorní odhad stavu a kovarianční matice:

$$\overline{\hat{x}}_t = f(\hat{x}_{t-1}, u_{t-1}, 0)$$

$$\overline{P}_t = A_t P_{t-1} A_t^T + Q_{t-1}$$

Ve druhé části označované jako oprava měření (measurement update) neboli korekce pak získáme aposteriorní odhad stavu \hat{x}_t a kovarianční matice P_t :

$$K_{t} = \overline{P}_{t}C_{t}^{T} \left(C_{t}\overline{P}_{t}C_{t}^{T} + R_{t}\right)^{-1}$$
$$\hat{x}_{t} = \overline{\hat{x}}_{t} + K_{t} \left(y_{t} - h\left(\overline{\hat{x}}_{t}, 0\right)\right)$$
$$P_{t} = \left(I - K_{t}C_{t}\right)\overline{P}_{t}$$

Pro úplnost je ještě třeba dodat počáteční apriorní odhady \hat{x}_0 a $P_0.$

1.6.2 Teoretické zdůvodnění injektáží

tady bude odvození, proč vlastně injektáže fungují, jak se to projevuje v rovnicích a co je na výstupu

1.6.3 Hlavní příčiny neurčitosti v PMSM

Následující popis částečně vychází z [29] (případně najít další zdroje):

- skutečná napětí ve stroji PWM a invertor
 - efekt mrtvých časů
 - -nelineární úbytky napětí v důsledku voltam
perové charakteristiky napájecí elektroniky
- chyby měření zaokrouhlovací chyba senzorů
- \bullet zanedbání složitějších efektů v modelu závislost parametrů na teplotě, saturace magnetickým tokem
- nepřesné hodnoty parametrů stroje
- nedokonalosti samotného motoru zařízení není nikdy vyrobeno přesně, výskyt nesymetrií, anizotropických vlastností rotoru, samotných permanentních magnetů a podobně
- vliv diskretizace rovnic Eulerova metoda
- vliv neznámého zátěžného momentu

 ${\rm V}$ důsledku bezsenzorového návrhu dále přibývá neznalost:

- počáteční polohy
- polohy při provozu stroje
- velikosti otáček při provozu stroje
- směru otáčení která ze symetrických verzí (ω, ϑ) a $(-\omega, \vartheta + \pi)$ je realizována

2 Metody řízení PMSM

Cílem řízení systému je obvykle dosažení optimální shody se zadanými požadavky. Ty jsou většinou reprezentovány referenčním signálem, který dostává regulátor na svůj vstup spolu s hodnotami pozorování systému. V mnoha případech regulátorů je obvyklé uvažovat jako referenční hodnotu nulu, příkladem může být PI regulátor nebo standartní lineárně kvadratické řízení. Je-li řízený systém lineární, není řízení na nulové hodnoty problémem, protože pro lineární systémy platí princip superpozice a výsledek pro nenulové požadované hodnoty je možno snadno získat lineární operací. V případě nelineárních systémů je situace komplikovanější a nenulový referenční signál je třeba vhodně ošetřit. Příklad takového postupu představuje úprava lineárně kvadratického řízení pro PMSM v kapitole (**odkaz**).

V této kapitole bude nejdříve uvedeno obecné členění řídících algoritmů, následovat bude popis klasických technik užívaných k řízení PMSM. Dále bude věnována pozornost duálnímu řízení a na závěr budou popsány Cramer-Raovy meze jako nástroj použitelný ke srovnání jednotlivých algoritmů z hlediska, jak dobře dokáží zlepšit pozorovatelnost systému.

2.1 Rozdělení řídících algoritmů

Algoritmy užívané pro řízení systémů, tedy nejen PMSM, lze obecně rozdělit na základě jejich charakteristických vlastností do několika skupin. Toto rozdělení je obzvláště výhodné při práci se suboptimálními metodami. Rozčlenění je provedeno na základě dostupnosti pozorováním (měřením) stavu systému pro návrh řídícího zásahu a vychází z [1]:

2.1.1 Řídicí strategie založené na otevřené smyčce

V otevřené smyčce (open-loop) předpokládáme, že není dostupné žádné měření stavu systému. Řídící zásah je tedy navrhován pouze na základě znalosti struktury systému a stanovených požadavků, například ve formě referenčního signálu. Vzhledem k tomu, že tento přístup pouze navrhuje řídící zásahy a již nijak nevyhodnocuje jejich skutečný dopad, výsledky často nejsou dostačující pro náročnější aplikace. Příkladem užití spolu s PMSM může být skalární volt/herz řízení, viz odstavec 2.2.1.

2.1.2 Zpětnovazební řídící strategie

Oproti předchozí kategorii je zde zavedena zpětná vazba (feedback), která v každém časovém kroku t poskytuje měření y_t . Dostupná znalost o systému v čase t jsou tedy,

kromě jeho struktury, všechna měření y_1, \ldots, y_t až do času t. Ale dále již nepředpokládáme žádnou znalost o budoucích měřeních. Tento přístup je také označován jako pasivně adaptivní, protože regulátor se "učí" na základě měření, ale nijak tomuto učení aktivně "nepomáhá". Tedy informace, které se o systému dozví, získává v jistém smyslu náhodou a ne záměrně. Příklad tohoto přístupu představují klasické techniky pro řízení PMSM jako vektorové řízení založené na PI regulátorech nebo LQ ve spojení s nějakým běžným estimátorem založeným na zpětné elektromotorické síle, například EKF.

2.1.3 Řídící strategie založená na uzavřené smyčce

Nejdříve je třeba poznamenat, že jak uvádějí autoři [1], není často v literatuře zdůrazňován a rozlišován rozdíl mezi strategií založené na uzavřené smyčce (closed-loop) a zpětnovazební strategií (feedback). Řídící strategie pracující v uzavřené smyčce uvažuje všechna budoucí pozorování a tedy využívá znalosti, že smyčka zůstane uzavřena až do konce uvažovaného časového horizontu. Tuto znalost se snaží zužitkovat, především v tom smyslu, že současný řídící zásah může ovlivnit nejistotu týkající se budoucích stavů, to je také nazýváno jako *duální efekt*. V tomto případě může vhodný řídící zásah "pomoci" učení (odhadování) tím, že snižuje nejistotu budoucích stavů a tento přístup lze označit za aktivně adaptivní. Taté problematice se detailněji věnuje část 2.4 zabývající se duálním řízením.

2.2 Klasické metody řízení PMSM

2.2.1 Skalární řízení

Skalární řízení je často využíváno v asynchronních strojích, je však možné užit jej i pro PMSM. Detailněji je popsáno například v [40]. Jeho velkou výhodou je, že se jedná v podstatě o bezsenzorový návrh řízení, protože funguje na principu nezpětnovazebního řízení. Nevýhodou je pak závislost rychlosti na zátěžném momentu, špatná regulace momentu a horší dynamické vlastnosti. I přes zmíněné nevýhody toto řízení obvykle stačí na jednudušší aplikace jako pohon větráků, čerpadel nebo klimatizací [27].

Toto řízení je také označováno jako V/f nebo volt/herz řízení, protože regulovanou veličinou je právě poměr napětí a frekvence. Snahou řízení je udržet poměr napětí a frekvence konstantní. Úhlová rychlost rotoru může být určena nepřímo výpočtem z frekvence napájecího napětí. Tato hodnota může být považována za hodnotu skutečných otáček stroje, pokud zátěžný moment nepřesáhne kritickou hodnotu. Pro řízení ale skutečnou hodnotu otáček stroje znát nepotřebujeme, algoritmus totiž pracuje následovně:

Z požadovaných otáček se určí frekvence f, ta slouží jako referenční signál pro regulátor. Ten pak řídí poměr napětí a frekvence V/f tak, aby byl konstantní. Na jeho výstupu získáme amplitudu napětí V. Řídící napětí pro PMSM v $\alpha - \beta$ souřadnicích je pak ve tvaru

$$u_{\alpha} = V \cos(2\pi f t)$$
$$u_{\beta} = V \sin(2\pi f t)$$

2.2.2 Přímé řízení momentu

Přímé řízení momentu (Direct Torque Control, DTC) se užívá, když je potřeba vysoký výkon vzhledem k dynamice momentu. Je řízen přímo moment stroje a základní princip je následující: Kruhová trajektorie statorového toku se rozdělí na šest symetrických částí. Velikosti vektorů statorového toku a elektromagnetického momentu v souřadnicích $\alpha - \beta$ je pak držena v předem stanovených mezích prostřednictvím vhodného spínání jedné ze šesti kombinací na invertoru. [40, 28]

Touto metodou text již dále nezabývá a je zde uvedena jen pro úplnost.

2.2.3 Vektorové řízení

Jedná se asi o nejčastěji využívaný řídící algoritmus. Je užíván pro řízení v kombinaci s estimátorem založeným na zpětné elektromotorické síle, injektáži i v hybridních verzích v naprosté většině citovaných textů z části (**citace**).

Dle [40] vektorové řízení odstraňuje většinu nevýhod skalárního řízení a v porovnání s ním poskytuje velmi dobrý výkon. Jedná se o řízení zpětnovazební a umožňuje samostatné řízení toku i momentu, potřebuje však znát odhady stavových veličin stroje včetně mechanických. Základní struktura je pak založena na vhodné kombinaci PI regulátorů.

PI regulátor

PI (proporcionálně integrační) regulátor je jednoduchý systém, který v sobě kombinuje dvě základní části: Proporcionální část, což je ve své podstatě zesilovač a integrální část reprezentovanou integrátorem. V tomto systému se vyskytují dvě konstanty K_p a K_i , které je třeba vhodně nastavit. Základní implementace je následnovná:

$$x_t = \operatorname{PI}\left(e_t, K_p, K_i\right) = K_p e_t + K_i \int_0^t e_\tau d\tau.$$

Diskrétní verze pak

$$x_t = \operatorname{PI}(e_t, K_p, K_i) = K_p e_t + K_i \sum_{k=0}^t e_k.$$

Tento regulátor je výhodné užít v případě, kdy chceme vyregulovat e_k obvykle reprezentující odchylku od požadované hodnoty na nulu. V některých případech bychom si vystačili s proporcionální složkou, integrální složka však dodává lepší stabilitu a schopnost odstranit konstatní regulační odchylku. Cenou za to je pomalejší konvergence. (citace)

2.3 Lineárně kvadratické řízení

Lineárně kvadratické řízení (Linear-Quadratic, LQ) je primárně navrženo pro řízení lineárních systémů s kvadratickou ztrátovou funkcí. Často lze v literatuře nalézt i pojem lineárně kvadraticky Gaussovské řízení (Linear-Quadratic-Gaussian, LQG), pod kterým je obvykle rozumněno spojení lineárně kvadratického řízení s Kalmanovým filtrem a je tedy užíváno pro lineární systém, kvadratickou ztrátovou funkci a Gaussovský šum. Tato část textu je však zaměřena na řízení a tedy zde bude popsána pouze část LQ. Dále je třeba zmínit, že existuje celá řada různých modifikací a vylepšení základního algoritmu, například pro nelineární systémy nebo lepší numerické vlastnosti. Základní formulace podle [2] je následovná:

Uvažujme lineární systém

$$x_{t+1} = A_t x_t + B_t u_t + w_t, \quad t = 0, 1, \dots, T - 1,$$

kde obecně vektorová veličina x_t reprezentuje stav systému v časovém kroku t, veličina u_t řízení v čase t a w_t je vzájemně nezávislý Gaussovský bílý šum s nulovou střední hodnotou a známou kovarianční maticí; je uvažován konečný diskrétní časový horizont T kroků.

Kvadratická ztrátová funkce je

$$\mathbf{E}\left\{x_T^T Q_T x_T + \sum_{t=0}^{T-1} \left(x_t^T Q_t x_t + u_t^T R_t u_t\right)\right\}$$

kde **E** značí očekávanou hodnotu, Q_t a R_t jsou penalizační matice stavu systému (splnění požadavků řízení), respektive penalizace vstupů. Při uvažování neúplné informace I_t o stavu je optimální řízení μ_t v každém časovém kroku rovno

$$\mu_t(I_t) = L_t \mathbf{E} \{ x_t \mid I_t \}$$

kde matice L_t je dána rovností

$$L_t = -\left(R_t + B_t^T K_{t+1} B_t\right)^{-1} B_t^T K_{t+1} A_t$$
(2.1)

přičemž matice K_t získáme rekurzivně z Riccatiho rovnice

$$K_{T} = Q_{T}$$

$$K_{t} = A_{t}^{T} \left(K_{t+1} - K_{t+1} B_{t} \left(R_{t} + B_{t}^{T} K_{t+1} B_{t} \right)^{-1} B_{t}^{T} K_{t+1} \right) A_{t} + Q_{t}$$

$$(2.2)$$

Lineárně kvadratický algoritmus s QR rozkladem

Předchozí výpočet pomocí Riccatiho rovnice (2.1) a (2.2) však není příliš vhodným z numerických důvodů (**nějaká reference**). Místo něj je pro praktické výpočty výhodnější použít algoritmus lineárně kvadratického řízení založený na QR rozkladu (**reference**). Tento algoritmus má lepší numerické vlastnosti, umožňuje snadnější výpočet maticové inverze (inverze pouze trojúhelníkové matice) a lze pomocí něj implementovat i složitější kvadratickou ztrátovou funkci (nejen dva členy pro penalizaci stavu a vstupů).

Postup je založen na přepisu kvadratické ztráty do tvaru

$$x_{t+1}^{T}Q_{t}x_{t+1} + u_{t}^{T}R_{t}u_{t} = x_{t+1}^{T}\sqrt{Q_{t}}^{T}\sqrt{Q_{t}}x_{t+1} + u_{t}^{T}\sqrt{R_{t}}^{T}\sqrt{R_{t}}u_{t}$$

kde \surd je vhodná maticová odmocnina. A tedy v každém časovém kroku tminimalizujeme funkciT

$$x_{t+1}^{T}\sqrt{Q_{t}}^{T}\sqrt{Q_{t}}x_{t+1} + u_{t}^{T}\sqrt{R_{t}}^{T}\sqrt{R_{t}}u_{t} + x_{t+1}^{T}\sqrt{S_{t}}^{T}\sqrt{S_{t}}x_{t+1}$$

kde S_t reprezentuje ztrátu v následujících časových krocích až do konce časového horizontu. Do tohoto kvadratického výrazu je možno dostadit model vývoje pro $x_{t+1}=A_tx_t+B_tu_t$

$$(Ax_{t} + B_{t}u_{t})^{T}\sqrt{Q_{t}}\sqrt{Q_{t}}(Ax_{t} + B_{t}u_{t}) + u_{t}^{T}\sqrt{R_{t}}^{T}\sqrt{R_{t}}u_{t} + (Ax_{t} + B_{t}u_{t})^{T}\sqrt{S_{t}}^{T}\sqrt{S_{t}}(Ax_{t} + B_{t}u_{t})$$

a následně jej zapsat maticově ve tvaru

$$\begin{pmatrix} u_t \\ x_t \end{pmatrix}^T \begin{bmatrix} \sqrt{Q_t}B_t & \sqrt{Q_t}A_t \\ \sqrt{R_t} & 0 \\ \sqrt{S_t}B_t & \sqrt{S_t}A_t \end{bmatrix}^T \underbrace{\begin{bmatrix} \sqrt{Q_t}B_t & \sqrt{Q_t}A_t \\ \sqrt{R_t} & 0 \\ \sqrt{S_t}B_t & \sqrt{S_t}A_t \end{bmatrix}}_{Z} \begin{pmatrix} u_t \\ x_t \end{pmatrix}$$

na maticiZnásledně aplikujeme QR rozklad, to jest $Z=Q_ZR_Z$ a předchozí vztah upravíme na tvar

$$\begin{pmatrix} u_t \\ x_t \end{pmatrix}^T Z^T Z \begin{pmatrix} u_t \\ x_t \end{pmatrix} = \begin{pmatrix} u_t \\ x_t \end{pmatrix}^T R_Z^T Q_Z^T Q_Z R_Z \begin{pmatrix} u_t \\ x_t \end{pmatrix} = \begin{pmatrix} u_t \\ x_t \end{pmatrix}^T R_Z^T R_Z \begin{pmatrix} u_t \\ x_t \end{pmatrix}$$

a dále využijeme rovnosti $Q_Z^T Q_Z = I$. Matice R_Z je v horním trojúhelníkovém tvaru, tedy blokově zapsáno

$$R_Z = \left[\begin{array}{cc} R_{uu} & R_{ux} \\ 0 & R_{xx} \end{array} \right]$$

Ztrátu nyní můžeme zapsat jako

$$\begin{pmatrix} u_t \\ x_t \end{pmatrix}^T R_Z^T R_Z \begin{pmatrix} u_t \\ x_t \end{pmatrix} = \begin{pmatrix} R_{uu}u_t + R_{ux}x_t \\ R_{xx}x_t \end{pmatrix}^T \begin{pmatrix} R_{uu}u_t + R_{ux}x_t \\ R_{xx}x_t \end{pmatrix}$$
$$= (R_{uu}u_t + R_{ux}x_t)^T (R_{uu}u_t + R_{ux}x_t) + x_t^T R_{xx}^T R_{xx}x_t$$

kterou, vzhledem k její kvadratičnosti a nezávislosti druhého členu na u_t , zřejmě minimalizujeme volbou u_t takovou, že $(R_{uu}u_t + R_{ux}x_t) = 0$ a tedy volíme

$$u_t = -R_{uu}^{-1}R_{ux}x_t$$

Matici $R_{xx}^T R_{xx}$ pak použijeme do předchozího časového kroku jako novou matici S.

2.4 Duální řízení

Duální řízení je obvykle využíváno v systémech s neurčitostí, představovanou například neznámými parametry, nepozorovatelnými stavovými veličinami nebo samotnou strukturou systému. Snahou je tuto neurčitost snížit a poskytnout řízení srovnatelné kvality, jako

v případě stejného systému bez neurčitosti. Charakteristickým rysem duálního řízení je, že obsahuje dvě hlavní části: "*opatrn*ou" a "*budící*". *Opatrná* část, má za cíl pokud možno co nejlépe kontrolovat systém a snažit se dosáhnout optimální shody s požadavky. Oproti tomu *budící* část hledá optimální budící signál, který pomáhá co nejlépe určit neznámé veličiny systému. Tyto části jdou však proti sobě a cílem duálního řízení je nalézt mezi nimi vhodný kompromis.

Jak již bylo předznamenáno v části 2.1. Většina klasických metod pro řízení a estimaci obecně spadá do kategorie zpětnovazebních streategií a tedy trpí nedostatky, které se snaží duální řízení odstranit:

- Oddělení řídící a estimační část, které následně pracují nezávisle, i když obecně tyto dvě části nezávislé nejsou a navzájem se ovlivňují.
- Předpoklad, že odhad poskytnutý estimátorem se rovná skutečné hodnotě stavové veličiny. Tento přístup je označován jako *Certainty Equivalence* (CE). Oproti tomu duální řízení předpokládá stavové veličiny jako náhodné veličiny a uchovává si o nich statistickou informaci. Odhad z estimátoru tedy uvažuje například ve tvaru střední hodnoty a variance dané veličiny a předpokládá, že skutečná hodnota se nachazí například v konfidenčním intervalu s těmito parametry. Z tohoto pohledu tedy přístup CE předpokládá, že skutečná hodnota je rovna střední hodnotě. Duální řízení tedy narozdíl od ostatních postupů založených na CE principu uvažuje kromě odhadu stavové veličiny i to, jak je tento odhad přesný a tomu také přizpůsobuje řídící zákroky.
- Klasický regulátor se při řízení stochastických systémů s neurčitostí obvykle chová "opatrně", aby nezvyšoval dopad neurčitostí na celkovou ztrátu. Oproti tomu regulátor využívající duálního efektu může být méně opatrný a přidat budící signál, aby snížil neurčitost v budoucnu a tím celkově vylepšil své výsledky [1].

Výše zmíněné důvody ukazují, proč by duální přístup mohl být obvzláště vhodný pro řízení PMSM. Je ale třeba mít na paměti, že duální řízení s sebou nese i některé nevýhody. Jedná se především o značnou výpočetní náročnost. Ta je problematická zejména, když zamýšlíme i výpočet v reálném čase. Proto se v textu zaměříme hlavně na nejjednodušší algoritmy duálního řízení, které by tento požadevek mohly naplnit.

2.4.1 Úloha duálního řízení

Formulace úlohy duálního řízení

Základní formulace problému duálního řízení pro časově diskrétní obecně nelineární systém dle [13] je:

$$x_{t+1} = f_t(x_t, p_t, u_t, \xi_t), \quad t = 0, 1, \dots, T-1$$

$$p_{t+1} = v_t(p_t, \varepsilon_t)$$

$$y_t = h_t(x_t, \eta_t)$$

kde x_t je vektor stavu, p_t vektor neznámých parametrů, u_t vektor řídících vstupů, y_t vektor výstupů systému, vektory ξ_t , ε_t a η_t představují nezávislý náhodný bílý šum s nulovou střední hodnotou a známým rozptylem, vše je uvažováno v čase t a f_t , v_t a h_t jsou známé vektorové funkce. Počáteční hodnoty x_0 a p_0 předpokládáme také známé. Množinu výstupů a vstupů systému dostupných v čase t označujeme jako *informační vektor* $I_t = \{y_t, \ldots, y_0, u_{t-1}, \ldots, u_0\}$, kde $t = 1, \ldots, T - 1$ a $I_0 = \{y_0\}$.

Ztrátová funkce pro optimalizaci řízení má tvar

$$J = \mathbf{E} \left\{ \sum_{t=0}^{T-1} g_{t+1} \left(x_{t+1}, u_t \right) \right\}$$
(2.3)

kde g_{t+1} jsou známe kladné konvexní skalární funkce. Očekáváná hodnota **E** je počítána vzhledem k všem náhodným veličinám ($x_0, p_0, \xi_t, \varepsilon_t$ a η_t , kde $t = 0, 1, \ldots, T-1$).

Obecné řešení

Problémem optimálního adaptivního duálního řízení je nalezení takové řídící strategie $u_t = u_t(I_t)$ ze známé množiny přípustných hodnot řízení U_t , která minimalizuje ztrátovou funkci $J \ge 2.3$.

Optimální řešení tohoto problému může být nalezeno rekurzivně užitím dynamického programování, což vede na následující rovnice:

$$J_{T-1}(I_{T-1}) = \min_{u_{T-1} \in U_{T-1}} \mathbf{E} \{ g_T(x_T, u_{T-1}) \mid I_{T-1} \}$$

$$J_t(I_t) = \min_{u_t \in U_t} \mathbf{E} \{ g_{t+1}(x_{t+1}, u_t) + J_{t+1}(I_{t+1}) \mid I_t \}$$

pro $t = T - 2, T - 3, \dots, 0.$

2.4.2 Injektáže jako duální řízení

Na injektáže lze z jistého směru pohlížet také jako na duální řízení. Především v sobě kombinují obě žádoucí vlastnosti, opatrnost a buzení. Opatrnost je reprezentována konkrétním použitým regulátorem, který se snaží co nejlépe sledovat cíl řízení. Injektovaný signál pak představuje buzení, které napomáhá k určení parametrů stroje.

V základním návrhu je přidáván vysokofrekvenční signál stále, bez ohledu na okolnosti a tedy tento návrh se příliš nesnaží o nalezení kompromisu mezi opatrným řízením a buzením. Velkou výhodou ale je, že to příliš nevadí, obzvláště při nízkých otáčkách, protože vysokofrekvenční signál má minimální vliv na samotný chod stroje. Současně ale poskytuje relativně dobrý odhad natočení rotoru, jehož kvalita nezávisí na otáčkách, ale pouze na rozdílu induktancí.

Jistý krok směrem k hledání kompromisu mezi opatrností a buzením lze pozorovat u hybridních metod, které buď plynule, nebo jednorázově přepínají mezi dvěma modely, s injektáží a bez. Jeden je určen pro dobrou estimaci a druhý pro nízké ztráty při řízení. To vede k velkému zlepšení, protože přídavný signál je injektován, jen, když je opravdu potřeba. Hlavním problémem injektáží z hlediska duálního řízení je, že se jedná spíše o "ad hoc" přístup, který byl navržen s využitím konkrétních vlastností PMSM a pro předem určený účel. Injektovaný vysokofrekvenční signál je užívaný jednak z důvodu menšího vlivu na chod samotného stroje. Další důvod pro jeho užití je relativně snadné zpracování a vyhodnocení pomocí metod analýzy signálu, které lze snadno implementovat hardwarově (filtry, demodulace, fázový závěs). Dalším problémem injektovaného signálu jsou pak jeho parametry, jako amplituda a frekvence, ty jsou zpravidla nalézány experimentálně.

Je tedy na místě položit otázku, jestli takovýto přídavný signál může být optimálním buzením a nebo mu být alespoň v nějakém smyslu blízko? Odpovědět samozřejmě není snadné z důvodu praktické neřešitelnosti problému nalezení optimálního duálního řízení. Ve prospěch injektáží, a zejména hybridních metod, mluví výsledky praktických experimentů na skutečných motorech, proti nim pak zejména to, že byly navrhovány bez ohledu na optimalitu a hledání kompromisu mezi opatrností a buzením. Nicméně se jedná o dobrý základ, který je vhodný k bližšímu prostudování při návrhu méně náročných metod duálního řízení.

2.4.3 Přehled metod duálního řízení

Následující přehled představuje vybrané suboptimální algoritmy využitelné k řešení úlohy duálního řízení. Vybírány byly především nejjednodušší algoritmy, které by teoreticky umožnily implementaci v reálném čase pro řízení PMSM.

Bikriteriální metoda

Bikriteriální metoda je založena na relativně jednoduchém principu. Ve snaze splnit obě hlavní vlastnosti duálního řízení (opatrnost a buzení) je ztrátová funkce rozdělena na dvě části, proto se také metoda nazývá bikriteriální. První ztrátová funkce odpovídá takzvanému opatrnému řízení, které navrhuje tím menší řídící zásahy, čím je větší variance neznámých parametrů (proto opatrné). Nesnaží se však primárně tuto varianci nijak snížit. Druhá ztrátová funkce představuje kritérium pro optimální buzení. Tyto dvě ztrátové funkce je třeba současně minimalizovat. Minimalizace těchto dvou funkcí jde ale obecně z podstaty problému proti sobě, navíc optimální budící zásah bude zpravidla neomezeně velký. Proto je zvolen následující postup:

- 1. nejdříve je nalezeno optimální opatrné řízení
- 2. dále je vytyčena množina přípustných řešení kolem řízení nalezeného v bodě (1.), například se může jednat o interval
- druhá ztrátová funkce pro optimální buzení je minimalizována již pouze v rámci množiny přípustných řešení z bodu (2.)

Konkrétní realizace hledání optimálního řízení (minimalizace) pak již závisí na řešeném problému.

ρ -aproximace

Jako ρ -aproximace označujeme suboptimální přístupy k řešení problému duálního řízení, kdy se snažíme aproximovat pravděpodobnostní míru neznámých stavů a parametrů systému. Dále lze při užití této metody snadno nalézt odpovídající kategorii řídícího algoritmu, viz část 2.1. Dle [12, 11, 13] je problematika ρ -aproximací formulována následovně: Hledání suboptimální řídící strategie je založeno na minimalizaci modifikované ztrátové funkce

$$J_{t}(I_{t},\rho_{t}) = \mathbf{E}_{\rho_{t}} \left\{ \sum_{i=t}^{T-1} g_{t+1}(x_{i+1},u_{i}) \mid I_{k} \right\}$$

V čase t je řídící strategie $u_t(I_t)$ nalezena pomocí aproximace podmíněné hustoty pravděpodobnosti stavů a parametrů systému pro budoucí časové kroky

$$\rho_t = p\left(x_{t+i}, p_{t+i} \mid I_{t+i}\right)$$

pro $i = 0, 1, \dots, T - t - 1$.

Pro různé volby ρ_t pak můžeme získat následující přístupy:

• *Řídící strategie s otevřenou smyčkou* (open-loop, OL) uvažuje systém bez zpětné vazby a optimální řízení je hledáno z apriorní informace o stavech a parametrech systému. Tento zjednodušující předpoklad je ekvivalentní aproximaci

$$\rho_t = \{ p(x_{t+i}, p_{t+i} \mid I_{t+i}) = p(x_{t+i}, p_{t+i} \mid I_0), i = 0, \dots, T - t - 1 \}$$

• Zpětnovazební řídící strategie s otevřenou smyčkou (open-loop feedback, OLF) také uvažuje systém bez zpětné vazby, ale jen pro budoucích časové kroky (t+1 až T), v současném časovém kroku t zpětnou vazbu uvažuje. Pozorování y_t jsou tedy použita k estimaci stavů i parametrů systému, ale pouze v součazném časovém kroku t, v budoucích již ne. Opět lze formulovat pomocí ρ -aproximace:

$$\rho_t = \{ p(x_{t+i}, p_{t+i} \mid I_{t+i}) = p(x_{t+i}, p_{t+i} \mid I_t), i = 0, \dots, T - t - 1 \}$$

• Pro srovnání zde bude uvedena i aproximace, která vede na již zmiňovaný přístup *Certainty Equivalence* (CE):

$$\rho_t = \{ p(x_{t+i}, p_{t+i} \mid I_{t+i}) \\ = \delta(x_{t+i} - \hat{x}_{t+i}) \,\delta(p_{t+i} - \hat{p}_{t+i}), i = 0, \dots, T - t - 1 \}$$

kde δ značí Diracovu delta funkci a $\hat{x}_{t+i} = \mathbf{E} \{ x_{k+i} \mid I_{t+i} \}, \, \hat{p}_{t+i} = \mathbf{E} \{ p_{k+i} \mid I_t \}.$

• Částečný CE přístup (PCE) je založen na vhodné kombinaci předchozích postupů CE a OLF. Definujme rozšířený stavový vektor jako $z_t^T = \begin{pmatrix} x_t^T & p_t^T \end{pmatrix}$, tedy jako vektor sdružující původní stav systému a jeho neznámé parametry. Tento vektor následně rozdělíme na dvě části s prázdným průnikem $z_{1,t}$ a $z_{2,t}$. Nyní aplikujeme

na část z_1 zjednodušující předpoklad CE a na část z_2 předpoklad OLF. To odpovídá následující ρ -aproximaci:

$$\rho_t = \{ p(z_{1,t+i}, z_{2,t+i} \mid I_{t+i}) \\ = \delta(z_{1,t+i} - \hat{z}_{1,t+i}) p(z_{2,t+i} \mid I_t), i = 0, \dots, T-t-1 \}$$

kde p $(z_{1,t+i}, z_{2,t+i} | I_{t+i}) = p(z_{t+i} | I_{t+i}) = p(x_{t+i}, p_{t+i} | I_{t+i})$. Samotné rozdělení vektoru z na dvě části je třeba vyřešit s ohledem na konkrétní strukturu systému, pro který je řízení navrhováno. Vhodnou volbou může být například označit jako z_1 stavové veličiny, které jsou přímo pozorovány. Autoři dále poukazují i na možnost kombinace s bikriteriálním přístupem.

Řešení LQG problému pomocí teorie her

Výpočetně relativně málo náročné řešení diskrétního LQG problému duálního řízení je představeno v [35]. Na řešení problému se užívá teorie her, kde hledáme optimální znáhodněnou strategii. Výsledkem pak je, že optimální řešení přeformulovaného problému duálního řízení je vážený průměr konečného počtu standartních LQG optimálních regulátorů. Jako váhové faktory jsou brány zobecněné věrohodnostní poměry.

Hyperstav

Algoritmus využívající hyperstav je předložen v [22] a z tohoto zdroje také převážně vychází následný popis a implementace v tomto textu. Hlavní rozdíl však je použití spojitého času v uvedeném zdroji, zatímco v tomto textu je využíván čas diskrétní. Základní myšlenka hyperstavu je poměrně jednoduchá: Vyjdeme z klasicky definovaného stavu systému v čase t, označme jej jako x_t . Dále předpokládejme, že pro řešení úlohy řízení PMSM užíváme EKF jako extimátoru, stejný estimátor je užit i v [22]. Použití algoritmu EKF nám v každém čase poskytne odhad stavu \hat{x}_t , ale kromě tohoto odhadu poskytuje i odhad kovariance stavu reprezentovaný maticí P_t , viz odstavec 1.6.1. Nyní definujeme vektor hyperstavu v čase t jako původní stav x_t , ke kterému navíc přidáme prvky matice P_t . Z důvodu symetrie není třeba přidávat celou matici P_t . Nyní na systém popsaný hyperstavem aplikujeme klasickým postupem algoritmus EKF a vhodné řízení, například LQ. Algoritmus EKF je tedy aplikován na systém dvakrát, poprvé formálně na původní stav a následně na hyperstav. Výhodou tohoto přístupu je, že kromě odhadu samotných stavových veličin, máme k dispozici i odhad jejích kovariancí a můžeme s nimi pracovat při návrhu řízení. Hlavními nevýhodami jsou růst velikost hyperstavu obecně kvadraticky s velikostí původního stavu a dále komplikace při výpočtu derivací rovnic pro výpočet EKF na stavu.

2.5 PCRB

Při vyhodnocování efektivity jednotlivých použitých algoritmů je výhodné mít k dispozici prostředek k jejich srovnání. K tomuto účelu lze použít aposteriorních Cramer-

Raových mezí (Posterior Cramer-Rao Bounds, PCRB). Interpretace PCRB je zjednodušeně taková, že představují "množství informace", které je o dané veličině produkováno na výstupu systému. Konkrétněji se jedná o dolní mez střední kvadratické chyby. Tedy reprezentuje minimální chybu, které se odhadovací algoritmus v uvažovaném případě dopustí. PCRB lze tedy využít ke srovnání jednotlivých uvažovaných duálních algoritmů v tom smyslu, že je možné vyhodnocovat, jak každý z nich dokáže zlepšit odhad stavových veličin a zvýšit pozorovatelnost v kritických režimech. (citace)

2.5.1 Popis PCRB

Následující popis PCRB včetně její specializace pro nelineární filtraci a dále pro Gaussovské hustoty je převzat z [37], kde je možné nalézt i detaily odvození zmiňovaných vztahů:

Definice

Nechť x představuje vektor měřených dat a θ je r-rozměrný odhadovaný náhodný parametr. Dále nechť $p_{x,\theta}(X,\Theta)$ je sdružená hustota pravděpodobnosti dvojice (x,θ) a g(x) je funkce x, která je odhadem θ . Pak PCRB chyby odhadu má tvar

$$P = \mathbb{E}\left\{\left[g(x) - \theta\right]\left[g(x) - \theta\right]^T\right\} \ge J^{-1}$$

kdeJ je Fischerova informační matice rozměru $r \times r$ s prvky

$$J_{ij} = \mathbb{E}\left[-\frac{\partial^2 \log p_{x,\theta}(X,\Theta)}{\partial \Theta_i \partial \Theta_j}\right]$$

pro i, j = 1, ..., r.

Nelineární filtrace

Pro případ filtrace jsou parametry odhadovány postupně v průběhu času na základě rekurzivních vzorců. Sdruženou hustotu pravděpodobnosti lze rozepsat jako součin podmíněných hustot a výpočítat pro každý čas matici J_t , kde J_t^{-1} představuje spodní mez střední kvadratické chyby odhadu x_t .

Uvažujme nelineární filtrační problém se systémem

$$\begin{aligned}
x_{t+1} &= f_t(x_t, w_t) \\
z_t &= h_t(x_t, v_t)
\end{aligned}$$
(2.4)

kde x_t je stav systému v čase t, z_t je pozorování v čase t, w a v jsou vzájemně nezávislé bílé procesy a f_t a h_t jsou obecně nelineární funkce. Pak je možné počítat rekurzivně posloupnost aposteriorních informačních matic J_t pro odhad stavu x_t jako

$$J_{t+1} = D_t^{22} - D_t^{21} \left(J_t + D_t^{11} \right)^{-1} D_t^{12}$$

kde matice D_t jsou dány rovnostmi

$$D_{t}^{11} = \mathbb{E}\left\{-\Delta_{x_{t}}^{x_{t}}\log p(x_{t+1} \mid x_{t})\right\}$$

$$D_{t}^{12} = \mathbb{E}\left\{-\Delta_{x_{t}}^{x_{t+1}}\log p(x_{t+1} \mid x_{t})\right\}$$

$$D_{t}^{21} = \mathbb{E}\left\{-\Delta_{x_{t+1}}^{x_{t}}\log p(x_{t+1} \mid x_{t})\right\} = \left(D_{t}^{12}\right)^{T}$$

$$D_{t}^{22} = \mathbb{E}\left\{-\Delta_{x_{t+1}}^{x_{t+1}}\log p(x_{t+1} \mid x_{t})\right\} + \mathbb{E}\left\{-\Delta_{x_{t+1}}^{x_{t+1}}\log p(z_{t+1} \mid x_{t+1})\right\}$$
(2.5)

Aditivní Gaussovský šum

Uvažujme speciální případ filtračního problému s aditivním šumem, kdy rovnice (2.4)má tvar

$$\begin{aligned}
x_{t+1} &= f_t(x_t) + w_t \\
z_t &= h_t(x_t) + v_t
\end{aligned}$$
(2.6)

a dále šumy w
avjsou Gaussovské s nulovou střední hodnotou a kovariančními maticem
i Q_t a R_t v tomto pořadí. Pak lze rovnice (2.5) zjednodu
šit do tvaru

$$D_{t}^{11} = \mathbb{E}\left\{\left[\nabla_{x_{t}}f_{t}^{T}(x_{t})\right]Q_{t}^{-1}\left[\nabla_{x_{t}}f_{t}^{T}(x_{t})\right]^{T}\right\}$$

$$D_{t}^{12} = -\mathbb{E}\left\{\nabla_{x_{t}}f_{t}^{T}(x_{t})\right\}Q_{t}^{-1}$$

$$D_{t}^{22} = Q_{t}^{-1} + \mathbb{E}\left\{\left[\nabla_{x_{t+1}}h_{t+1}^{T}(x_{t+1})\right]R_{t+1}^{-1}\left[\nabla_{x_{t+1}}h_{t+1}^{T}(x_{t+1})\right]^{T}\right\}$$
(2.7)

Pro úplnost je vhodné uvést, že v případě lineárního systému, to jest lineárních funkcí f_t a h_t , odpovídá rekurzivní výpočet matice J_t , založený na výše uvedených maticích (2.7) pro D_t , výpočtu aposteriorní kovarianční matice Kalmanova filtru $P_t = J_t^{-1}$.

3 Implementace algoritmů

3.1 Zjednodušení

Zátěžný moment T_L předpokládáme nulový.

3.2 Diskretizace

Vzhledem k uvažované implementaci řídících a odhadovacích algoritmů na digitálních počítačích je výhodnější uvažovat diskrétní systém. Diferenciální rovnice (1.17) případně (1.18) je tedy třeba diskretizovat a za tímto účelem bude v textu užito Eulerovy metody, kdy je derivace nahrazena dopřednou diferencí. Toto diskretizační schéma je sice méně přesné, ale oproti tomu je jednoduché na výpočet a tedy odstatečně rychlé. Diskretizační časový krok je totiž volen s ohledem na reálný systém, kde odpovídá vzorkovací frekvenci použitých senzorů. To je obvykle velmi krátký časový okamžik (řádově sto mikrosekund) a chyba v důsledku diskretizace Eulerovou metodou tedy není velká. Významnějším důvodem pro tuto metodu je však uvažování praktické aplikace v reálném čase, kdy je třeba v průběhu jedné vzorkovací periody vypočítat odhad stavových veličin a následně řídící zásah. Jednodušší diferenční rovnice, znamenají jednodušší popis systému a tedy rychlejší výpočet všech uvažovaných algoritmů nezbytný pro potenciální nasazení v reálné aplikaci.

S užíváním diferenčních rovnic jsou však spojeny jisté komplikace. Zatímco diferenciální rovnice popisující PMSM (1.17) a (1.18) lze libovolně převádět mezi jednotlivýmí souřadnými systémy pomocí vztahů (1.1) a (1.2), pro odpovídající rovnice diferenční to pravda není a jejich převod transformacemi (1.1) a (1.2) nedává vždy dobrý výsledek. Pro odvození diferenčních rovnic v konkrétní souřadné soustavě je tedy třeba postupovat ve dvou krocích. Nejprve převést vybranou soustavu rovnic (1.17) nebo (1.18) do zvolené souřadné soustavy. Následně je pak možné provést diskretizaci. Tato vlastnost neexistence univerzalních diferenčních rovnic převoditelných jednoduchými transformačními vztahy je důvodem, proč nejsou diferenční rovnice PMSM uvedeny již v části (1.3), ale jsou odvozeny pro každý konkrétní případ až zde.

3.2.1 Diskrétní rovnice pro stejné indukčnosti v souřadné soustavě $\alpha - \beta$

Pro odvození těchto rovnic vyjdeme ze soustavy diferenciálních rovnic (1.17)

$$\begin{aligned} \frac{di_{\alpha}}{dt} &= -\frac{R_s}{L_s}i_{\alpha} + \frac{\psi_{pm}}{L_s}\omega\sin\vartheta + \frac{1}{L_s}u_{\alpha} \\ \frac{di_{\beta}}{dt} &= -\frac{R_s}{L_s}i_{\beta} - \frac{\psi_{pm}}{L_s}\omega\cos\vartheta + \frac{1}{L_s}u_{\beta} \\ \frac{d\omega}{dt} &= \frac{k_p p_p^2 \psi_{pm}}{J}\left(i_{\beta}\cos\vartheta - i_{\alpha}\sin\vartheta\right) - \frac{p_p}{J}T_L - \frac{B}{J}\omega \\ \frac{d\vartheta}{dt} &= \omega \end{aligned}$$

a užijeme zmiňované Eulerovy metody. Derivaci tedy nahradíme konečnou diferencí

$$\frac{dx}{dt}\left(t\right) = \frac{x_{t+1} - x_t}{\Delta t}$$

kde Δt představuje diskterizační časový krok. Po úpravě je výsledná diskrétní soustava rovnic ve tvaru

$$\begin{aligned} i_{\alpha,t+1} &= \left(1 - \frac{R_s}{L_s} \Delta t\right) i_{\alpha,t} + \frac{\psi_{pm} \Delta t}{L_s} \omega_t \sin \vartheta_t + \frac{\Delta t}{L_s} u_{\alpha,t} \\ i_{\beta,t+1} &= \left(1 - \frac{R_s}{L_s} \Delta t\right) i_{\beta,t} - \frac{\psi_{pm} \Delta t}{L_s} \omega_t \cos \vartheta_t + \frac{\Delta t}{L_s} u_{\beta,t} \\ \omega_{t+1} &= \left(1 - \frac{B}{J} \Delta t\right) \omega_t + \frac{k_p p_p^2 \psi_{pm}}{J} \Delta t \left(i_{\beta,t} \cos \vartheta_t - i_{\alpha,t} \sin \vartheta_t\right) - \frac{p_p}{J} T_L \Delta t \\ \vartheta_{t+1} &= \vartheta_t + \omega_t \Delta t \end{aligned}$$

Pro zjednodušení zavedeme následující značení

$$a = 1 - \frac{R_s}{L_s} \Delta t$$

$$b = \frac{\psi_{pm}}{L_s} \Delta t$$

$$c = \frac{\Delta t}{L_s}$$

$$d = 1 - \frac{B}{J} \Delta t$$

$$e = \frac{k_p p_p^2 \psi_{pm}}{J} \Delta t$$

a jak bylo zmíněno v předchozí části, zátěžný moment předpokládáme nulový, tedy $T_L=0.$ Rovnice pak přejdou na tvar

$$i_{\alpha,t+1} = ai_{\alpha,t} + b\omega_t \sin \vartheta_t + cu_{\alpha,t}$$

$$i_{\beta,t+1} = ai_{\beta,t} - b\omega_t \cos \vartheta_t + cu_{\beta,t}$$

$$\omega_{t+1} = d\omega_t + e (i_{\beta,t} \cos \vartheta_t - i_{\alpha,t} \sin \vartheta_t)$$

$$\vartheta_{t+1} = \vartheta_t + \omega_t \Delta t$$
(3.1)

3.3 EKF

V této práci byl jako pozorovatel používán zejména rozšířený Kalmanův filtr. Budeme-li vycházet z popisu PMSM pomocí rovnic (1.17) pro stejné nebo (1.18) pro různé indukčnosti, nabízí se celá řada možností za jakých podmínek algoritmus EKF použí. Pro implementaci je však rozumných pouze několik málo možností.

Především nemá příliš smysl uvažovat EKF v rotorových souřadnicích d-q. Transformace ze statovorých souřadnic, ve kterých probíhá měření, do rotorových totiž závisí na úhlu natočení ϑ , viz rovnice (1.1). Hodnotu tohoto úhlu ale neznáme a navíc se jedná o hlavní veličinu, kterou chceme pomocí EKF určit. Dalším problémem je, že v rovnicích popisujících PMSM (v případě stejných i různých indukčností) v souřadné soustavě d-q hodnota ϑ vůbec nevystupuje a tedy ji ani nelze rozumně určit. Jistou možnstí, kdy by mělo smysl uvažovat EKF v souřadné soustavě d-q, je případ, že bychom znali hodnotu ϑ nebo její odhad z jiného zdroje. Příkladem by mohla být znalost úhlu na základě aplikace vhodné injektážní techniky. Dále však budeme uvažovat EKF pouze ve statorových souřadnicích, konkrétně $\alpha - \beta$.

3.3.1 Šum

Algoritmus EKF předpokládá Gaussovský model šumu. Vzhledem k popisu neurčitostí v PMSM (odkaz) tento předpoklad splněn není. Lze však provést aproximaci hustoty pravděpodobnosti skutečného šumu Gaussovskou hustotou s vhodnými parametry. Tyto parametry lze buď nalézt na základě teoretické analýzy vlastností šumu, jako v [29] nebo je lze nalézt experimentálně. V této práci posloužily jako výchozí hodnoty stanovené ve zmiňovaném zdroji [29], které byly následně experimentálně doupraveny.

3.3.2 Plný model

Prvním diskutovaným případem bude návrh označovaný jako plný model a budou uvažovány stejné indukčnosti v osách d-q. Všechny i_{α} , i_{β} , ω a ϑ popisující PMSM označíme jako stav x. Za pozorování y budeme považovat proudy i_{α} a i_{β} doplněné chybou měření. Plný model je tedy popsán stavem a měřením

$$\begin{aligned} x_t &= (i_{\alpha,t}, i_{\beta,t}, \omega_t, \vartheta_t)^T \\ y_t &= (y_{\alpha,t}, y_{\beta,t})^T \end{aligned}$$

jejichž vývoj v čase je dán rovnicemi modelového systému z části 1.6.1

$$x_{t+1} = f(x_t, u_t) + w_t$$

$$y_t = h(x_t) + v_t$$

kde funkce f odpovídá soustavě rovnic (3.1) a funkce h pouze vrací první dvě složky argumentu. Vektory w_t a v_t pak reprezentují vzájemně nezávislé bílé Gaussovské šumy s nulovou střední hodnotou a známými kovariančními maticemi Q_t a R_t v tomto pořadí.

Pro výpočet rekurzivního algoritmu EKF je třeba znát Jacobiho matice parciálních derivací A_t a C_t , kde $(A_t)_{ij} = \frac{\partial f_i}{\partial x_j} (\hat{x}_{t-1}, u_{t-1}, 0)$ a $(C_t)_{ij} = \frac{\partial h_i}{\partial x_j} (\overline{\hat{x}}_t, 0)$. V tomto případě je výpočet poměrně jednoduchý a výsledné matice jsou

$$A_{t} = \begin{bmatrix} a & 0 & b\sin\hat{\vartheta}_{t-1} & b\hat{\omega}_{t-1}\cos\hat{\vartheta}_{t-1} \\ 0 & a & -b\cos\hat{\vartheta}_{t-1} & b\hat{\omega}_{t-1}\sin\hat{\vartheta}_{t-1} \\ -e\sin\hat{\vartheta}_{t-1} & e\cos\hat{\vartheta}_{t-1} & d & -e\left(\hat{i}_{\beta,t-1}\sin\hat{\vartheta}_{t-1}+\hat{i}_{\alpha,t-1}\cos\hat{\vartheta}_{t-1}\right) \\ 0 & 0 & \Delta t & 1 \end{bmatrix}$$

$$C_{t} = C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
(3.2)

3.3.3 Redukovaný model

Redukovaný model se snaží usnadnit výpočet algoritmu EKF tím způsobem, že zmenšuje uvažovaný stav systému. Kritickým místem použití EKF je totiž časově náročná maticová inverze, viz část 1.6.1. Pro plný model má vektor stavu velikost 4 a tedy je invertována matice o rozměru 4×4 , oproti tomu redukovaný model užívá pouze stavu velikosti 2 a inverze matice 2×2 je znatelně rychlejší.

Hlavní myšlenkou je nezahrnovat proud
y i_α a i_β do stavu a rovnou je definovat jako měření, tedy

$$\begin{aligned} x_t &= (\omega_t, \vartheta_t)^T \\ y_t &= (i_{\alpha, t}, i_{\beta, t})^T \end{aligned}$$

Vyjdeme tedy ze stejných diskrétních rovnic popisujících PMSM (3.2), ale nyní první dvě rovnice představují měření a druhé dvě vývoj systému. Matice pro EKF jsou pak ve tvaru

$$A_{t} = \begin{bmatrix} d & -e\left(\hat{i}_{\beta,t-1}\sin\hat{\vartheta}_{t-1} + \hat{i}_{\alpha,t-1}\cos\hat{\vartheta}_{t-1}\right) \\ \Delta t & 1 \end{bmatrix}$$

$$C_{t} = \begin{bmatrix} b\sin\hat{\vartheta}_{t-1} & b\hat{\omega}_{t-1}\cos\hat{\vartheta}_{t-1} \\ -b\cos\hat{\vartheta}_{t-1} & b\hat{\omega}_{t-1}\sin\hat{\vartheta}_{t-1} \end{bmatrix}$$

$$(3.3)$$

Dále je pak třeba ještě upravit hodnoty kovariančních matic pro šumy .

3.3.4 Různé indukčnosti

V případě plného modelu pro různé indukčnosti v osách d - q je postup zcela analogický, jen výchozí rovnice jsou jiné. V praxi jsou však rovnice relativně složité, **sem se nevejdou a možná pak budou v příloze**.

- 3.4 PCRB
- 3.5 PI
- 3.6 LQ
- 3.7 lnjektáž
- 3.8 Bikriteriální
- 3.9 Hyperstav

4 Provedené experimenty

- vyhodnocení PCRB
- počáteční rozjezd různé chyby počátečního odhadu
- $\bullet~$ extrémní otáčky kam až to půjde
- nulové otáčky profil konstantní 0
- nízké otáčky: +-1 trojúhelníky a lichoběžníky
- průchody 0: +-10 trojúhelníky a lichoběžníky
- $\bullet\,$ vysoké otáčky: +-200 trojúhelníky a lichoběžníky

Obrázek 4.1: Příklad profilů požadovaných otáček na časovém horizontu 15s s amplitudou 10 rad/s: nahoře trojúhleníky a dole lichoběžníky

Literatura

- Bar-Shalom, Y.; Tse, E.: Dual effect, certainty equivalence, and separation in stochastic control. Automatic Control, IEEE Transactions on, ročník 19, č. 5, oct 1974: s. 494 - 500, ISSN 0018-9286, doi:10.1109/TAC.1974.1100635.
- [2] Bertsekas D. P.: Dynamic Programming and Optimal Control, ročník I. Belmont, Massachusetts: Athena Scientific, třetí vydání, 2005.
- [3] Bianchi, N.; Bolognani, S.; Jang, J.-H.; aj.: Comparison of PM Motor Structures and Sensorless Control Techniques for Zero-Speed Rotor Position Detection. *Power Electronics, IEEE Transactions on*, ročník 22, č. 6, 2007: s. 2466–2475, ISSN 0885-8993, doi:10.1109/TPEL.2007.904238.
- [4] Bianchi, N.; Bolognani, S.; Jang, J.-H.; aj.: Advantages of Inset PM Machines for Zero-Speed Sensorless Position Detection. *Industry Applications, IEEE Transactions on*, ročník 44, č. 4, 2008: s. 1190–1198, ISSN 0093-9994, doi: 10.1109/TIA.2008.926203.
- [5] Bolognani, S.; Oboe, R.; Zigliotto, M.: Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position. *Industrial Electronics, IEEE Transactions* on, ročník 46, č. 1, Únor 1999: s. 184–191, ISSN 0278-0046, doi:10.1109/41.744410.
- [6] Bolognani, S.; Tubiana, L.; Zigliotto, M.: EKF-based sensorless IPM synchronous motor drive for flux-weakening applications. *Industry Applications, IEEE Transactions on*, ročník 39, č. 3, 2003: s. 768–775, ISSN 0093-9994, doi: 10.1109/TIA.2003.810666.
- [7] Bolognani, S.; Zigliotto, M.; Zordan, M.: Extended-range PMSM sensorless speed drive based on stochastic filtering. *Power Electronics, IEEE Transactions on*, ročník 16, č. 1, Leden 2001: s. 110–117, ISSN 0885-8993, doi:10.1109/63.903995.
- [8] Chen, J.-L.; Liu, T.-H.; Chen, C.-L.: Design and implementation of a novel highperformance sensorless control system for interior permanent magnet synchronous motors. *Electric Power Applications, IET*, ročník 4, č. 4, april 2010: s. 226 –240, ISSN 1751-8660.
- [9] Feynman, R.; Leighton, R.; Sands, M.: Feynmanovy přednášky z fyziky s řešenými příklady 1/3. Havlíčkův Brod: Fragment, první vydání, 2000, ISBN 80-7200-405-0.
- [10] Feynman, R.; Leighton, R.; Sands, M.: Feynmanovy přednášky z fyziky s řešenými příklady 2/3. Havlíčkův Brod: Fragment, první vydání, 2001, ISBN 80-7200-420-4.

- [11] Filatov, N.; Unbehauen, H.: Survey of adaptive dual control methods. Control Theory and Applications, IEE Proceedings, ročník 147, č. 1, Leden 2000: s. 118–128, ISSN 1350-2379, doi:10.1049/ip-cta:20000107.
- [12] Filatov, N.; Unbehausen, H.: Adaptive predictive control policy for nonlinear stochastic systems. Automatic Control, IEEE Transactions on, ročník 40, č. 11, Listopad 1995: s. 1943–1949, ISSN 0018-9286, doi:10.1109/9.471221.
- [13] Filatov, N. M.; Unbehauen, H.: Adaptive Dual Control, Theory and Applications. Lecture Notes in Control and Information Sciences, Springer Berlin / Heidelberg, 2004.
- [14] Fišer, O.: Střídavý regulovaný pohon se synchronním motorem s permanentními magnety. Dizertační práce, VŠB - Technická univerzita Ostrava, dub 2006.
- [15] Foo, G.; Rahman, M.: Sensorless vector control of interior permanent magnet synchronous motor drives at very low speed without signal injection. *Electric Power Applications, IET*, ročník 4, č. 3, march 2010: s. 131-139, ISSN 1751-8660.
- [16] Genduso, F.; Miceli, R.; Rando, C.; aj.: Back EMF Sensorless-Control Algorithm for High-Dynamic Performance PMSM. *Industrial Electronics, IEEE Transactions* on, ročník 57, č. 6, june 2010: s. 2092 -2100, ISSN 0278-0046.
- [17] Harnefors, L.; Nee, H.-P.: A general algorithm for speed and position estimation of AC motors. *Industrial Electronics, IEEE Transactions on*, ročník 47, č. 1, Únor 2000: s. 77–83, ISSN 0278-0046, doi:10.1109/41.824128.
- [18] Jang, J.-H.; Sul, S.-K.; Ha, J.-I.; aj.: Sensorless drive of surface-mounted permanentmagnet motor by high-frequency signal injection based on magnetic saliency. *Industry Applications, IEEE Transactions on*, ročník 39, č. 4, 2003: s. 1031–1039, ISSN 0093-9994, doi:10.1109/TIA.2003.813734.
- [19] Kang, K.-L.; Kim, J.-M.; Hwang, K.-B.; aj.: Sensorless control of PMSM in high speed range with iterative sliding mode observer. In Applied Power Electronics Conference and Exposition, 2004. APEC '04. Nineteenth Annual IEEE, 2004.
- [20] Kim, H.; Lorenz, R.: Carrier signal injection based sensorless control methods for IPM synchronous machine drives. In *Industry Applications Conference*, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE, ročník 2, 2004, ISSN 0197-2618, s. 977–984 vol.2, doi:10.1109/IAS.2004.1348532.
- [21] Kim, H.; Yi, S.; Kim, N.; aj.: Using low resolution position sensors in bumpless position/speed estimation methods for low cost PMSM drives. In *Industry Applications Conference*, 2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005, ročník 4, 2005, ISSN 0197-2618, s. 2518-2525 Vol. 4, doi:10.1109/IAS.2005.1518814.
- [22] Kim, J.; Rock, S. M.: Stochastic Feedback Controller Design Considering the Dual Effect. In Proceedings of the AIAA Guidance, Navigation and Control Conference, Keystone, CO, August 2006.

- [23] Lee, J.; Hong, J.; Nam, K.; aj.: Sensorless Control of Surface-Mount Permanent-Magnet Synchronous Motors Based on a Nonlinear Observer. *Power Electronics*, *IEEE Transactions on*, ročník 25, č. 2, feb. 2010: s. 290 –297, ISSN 0885-8993.
- [24] Linke, M.; Kennel, R.; Holtz, J.: Sensorless position control of permanent magnet synchronous machines without limitation at zero speed. In *IECON 02 [Industrial Electronics Society, IEEE 2002 28th Annual Conference of the]*, ročník 1, 2002, s. 674–679 vol.1, doi:10.1109/IECON.2002.1187588.
- [25] Linke, M.; Kennel, R.; Holtz, J.: Sensorless speed and position control of synchronous machines using alternating carrier injection. In *Electric Machines and Drives Conference*, 2003. IEMDC'03. IEEE International, ročník 2, 2003, s. 1211–1217 vol.2, doi:10.1109/IEMDC.2003.1210394.
- [26] Novák, J.: Uplatnění synchronních strojů v dopravní technice. Elektro, čvn-zář 2006.
- [27] Pacas, M.: Sensorless Drives in Industrial Applications. Industrial Electronics Magazine, IEEE, ročník 5, č. 2, june 2011: s. 16 –23, ISSN 1932-4529.
- [28] Paturca, S. V.; Covrig, M.; Melcescu, L.: Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) - an approach by using Space Vector Modulation (SVM). In Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, 2006.
- [29] Peroutka, Z.; Smidl, V.; Vosmik, D.: Challenges and limits of extended Kalman Filter based sensorless control of permanent magnet synchronous machine drives. In *Power Electronics and Applications, 2009. EPE '09. 13th European Conference on*, sept. 2009, s. 1–11.
- [30] Persson, J.; Markovic, M.; Perriard, Y.: A new standstill position detection technique for non-salient PMSM's using the magnetic anisotropy method (MAM). In *Industry Applications Conference, 2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005*, ročník 1, 2005, ISSN 0197-2618, s. 238-244 Vol. 1, doi: 10.1109/IAS.2005.1518316.
- [31] Piippo, A.; Hinkkanen, M.; Luomi, J.: Sensorless control of PMSM drives using a combination of voltage model and HF signal injection. In *Industry Applications Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE*, ročník 2, 2004, ISSN 0197-2618, s. 964–970 vol.2, doi:10.1109/IAS.2004.1348530.
- [32] Piippo, A.; Hinkkanen, M.; Luomi, J.: Analysis of an Adaptive Observer for Sensorless Control of Interior Permanent Magnet Synchronous Motors. *Industrial Electro*nics, IEEE Transactions on, ročník 55, č. 2, 2008: s. 570–576, ISSN 0278-0046, doi:10.1109/TIE.2007.911949.
- [33] Piippo, A.; Salomaki, J.; Luomi, J.: Signal Injection in Sensorless PMSM Drives Equipped With Inverter Output Filter. Industry Applications, IEEE

Transactions on, ročník 44, č. 5, 2008: s. 1614–1620, ISSN 0093-9994, doi: 10.1109/TIA.2008.2002274.

- [34] Schmidt, P.; Gasperi, M.; Ray, G.; aj.: Initial rotor angle detection of a nonsalient pole permanent magnet synchronous machine. In *Industry Applications Conference*, 1997. Thirty-Second IAS Annual Meeting, IAS '97., Conference Record of the 1997 IEEE, ročník 1, Říjen 1997, s. 459–463 vol.1, doi:10.1109/IAS.1997.643063.
- [35] Sebald, A. V.: A computationally efficient optimal solution to the LQG discrete time dual control problem. In *Decision and Control including the 17th Symposium* on Adaptive Processes, 1978 IEEE Conference on, ročník 17, jan. 1978, s. 1160–1165, doi:10.1109/CDC.1978.268117.
- [36] Silva, C.; Asher, G.; Sumner, M.: Hybrid rotor position observer for wide speedrange sensorless PM motor drives including zero speed. *Industrial Electronics*, *IEEE Transactions on*, ročník 53, č. 2, 2006: s. 373–378, ISSN 0278-0046, doi: 10.1109/TIE.2006.870867.
- [37] Tichavsky, P.; Muravchik, C.; Nehorai, A.: Posterior Cramer-Rao bounds for discrete-time nonlinear filtering. *Signal Processing, IEEE Transactions on*, ročník 46, č. 5, may 1998: s. 1386 -1396, ISSN 1053-587X, doi:10.1109/78.668800.
- [38] Urlep, E.; Jezernik, K.: Low and Zero Speed Sensorless Control of nonsalient PMSM. In Industrial Electronics, 2007. ISIE 2007. IEEE International Symposium on, 2007, s. 2238-2243, doi:10.1109/ISIE.2007.4374956.
- [39] Černý, O.; Doleček, R.; Novák, J.: Synchronní motory s permanentními magnety pro trakční pohony kolejových vozidel. Vědockotechnický sborník ČD, , č. 29, 2010.
- [40] Štulrajter, M.; Hrabovcová, V.; Franko, M.: Permanent magnets synchronous motor control theory. *Journal of Electrical Engineering*, ročník 58, č. 2, 2007: s. 79–84.
- [41] Wallmark, O.; Harnefors, L.; Carlson, O.: Control Algorithms for a Fault-Tolerant PMSM Drive. Industrial Electronics, IEEE Transactions on, ročník 54, č. 4, 2007: s. 1973 –1980, ISSN 0278-0046, doi:10.1109/TIE.2007.895076.
- [42] Yongdong, L.; Hao, Z.: Sensorless control of permanent magnet synchronous motor – a survey. In Vehicle Power and Propulsion Conference, 2008. VPPC '08. IEEE, sept. 2008, s. 1 –8.