#include <arx.h>


Public Member Functions | |
| ARX (RV &rv, mat &V0, double &nu0, double frg0=1.0) | |
| Full constructor.  | |
| void | set_parameters (mat &V0, double &nu0) | 
| Set sufficient statistics.  | |
| void | get_parameters (mat &V0, double &nu0) | 
| Returns sufficient statistics.  | |
| void | bayes (const vec &dt) | 
Here  .  | |
| epdf & | _epdf () | 
| Returns a pointer to the epdf representing posterior density on parameters. Use with care!  | |
| ivec | structure_est (egiw Eg0) | 
| Brute force structure estimation.   | |
| double | _tll () | 
| access function  | |
| void | bayes (mat Dt) | 
| Batch Bayes rule (columns of Dt are observations).  | |
| const RV & | _rv () const | 
| access function  | |
| double | _ll () const | 
| access function  | |
Protected Attributes | |
| egiw | est | 
Posterior estimate of   in the form of Normal-inverse Wishart density.  | |
| ldmat & | V | 
| cached value of est.V  | |
| double & | nu | 
| cached value of est.nu  | |
| double | frg | 
| forgetting factor  | |
| double | last_lognc | 
cached value of lognc() in the previous step (used in evaluation of ll )  | |
| double | tll | 
| total likelihood  | |
| RV | rv | 
| Random variable of the posterior.  | |
| double | ll | 
| Logarithm of marginalized data likelihood.  | |
| bool | evalll | 
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save time.  | |
Regression of the following kind:
 where unknown parameters rv are 
, regression vector 
 is a known function of past outputs and exogeneous variables 
. Distrubances 
 are supposed to be normally distributed: 
Extension for time-variant parameters 
 may be achived using exponential forgetting (Kulhavy and Zarrop, 1993). In such a case, the forgetting factor frg 
 should be given in the constructor. Time-invariant parameters are estimated for frg = 1. 
| ivec ARX::structure_est | ( | egiw | Eg0 | ) | 
Brute force structure estimation.
References RV::count(), est, egiw::lognc(), and BM::rv.
 1.5.6