mlnorm< sq_T > Class Template Reference

Normal distributed linear function with linear function of mean value;. More...

#include <libEF.h>

Inheritance diagram for mlnorm< sq_T >:

Inheritance graph
[legend]
Collaboration diagram for mlnorm< sq_T >:

Collaboration graph
[legend]

List of all members.

Public Member Functions

 mlnorm (RV &rv, RV &rvc)
 Constructor.
void set_parameters (const mat &A, const sq_T &R)
 Set A and R.
vec samplecond (vec &cond, double &lik)
 Generate one sample of the posterior.
mat samplecond (vec &cond, vec &lik, int n)
 Generate matrix of samples of the posterior.
void condition (vec &cond)
 Set value of rvc . Result of this operation is stored in epdf use function _ep to access it.
virtual vec samplecond (const vec &cond, double &ll)
 Returns the required moment of the epdf.
virtual mat samplecond (const vec &cond, vec &ll, int N)
 Returns.
virtual void condition (const vec &cond)
 Update ep so that it represents this mpdf conditioned on rvc = cond.
virtual double evalcond (const vec &dt, const vec &cond)
 Shortcut for conditioning and evaluation of the internal epdf. In some cases, this operation can be implemented efficiently.
RV _rvc ()
 access function
RV _rv ()
 access function
epdf_epdf ()
 access function

Protected Attributes

RV rv
 modeled random variable
RV rvc
 random variable in condition
epdfep
 pointer to internal epdf


Detailed Description

template<class sq_T>
class mlnorm< sq_T >

Normal distributed linear function with linear function of mean value;.

Mean value $mu=A*rvc$.


Member Function Documentation

virtual vec mpdf::samplecond ( const vec &  cond,
double &  ll 
) [inline, virtual, inherited]

Returns the required moment of the epdf.

Returns a sample from the density conditioned on cond, $x \sim epdf(rv|cond)$.

Parameters:
cond is numeric value of rv
ll is a return value of log-likelihood of the sample.

Reimplemented in mprod.

References mpdf::condition(), mpdf::ep, epdf::evalpdflog(), and epdf::sample().

Referenced by MPF< BM_T >::bayes(), and PF::bayes().

virtual mat mpdf::samplecond ( const vec &  cond,
vec &  ll,
int  N 
) [inline, virtual, inherited]

Returns.

Parameters:
N samples from the density conditioned on cond, $x \sim epdf(rv|cond)$.
cond is numeric value of rv
ll is a return value of log-likelihood of the sample.

Reimplemented in mprod.

References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample().


The documentation for this class was generated from the following file:

Generated on Thu Oct 9 21:26:42 2008 for mixpp by  doxygen 1.5.6