#include <arx.h>


| Public Member Functions | |
| ARX (const RV &rv, const mat &V0, const double &nu0, const double frg0=1.0) | |
| Full constructor. | |
| ARX (const ARX &A0) | |
| Copy constructor. | |
| ARX * | _copy_ (bool changerv=false) | 
| Auxiliary function. | |
| void | set_parameters (const ldmat &V0, const double &nu0) | 
| Set sufficient statistics. | |
| void | set_statistics (const BMEF *BM0) | 
| get statistics from another model | |
| void | get_parameters (mat &V0, double &nu0) | 
| Returns sufficient statistics. | |
| void | bayes (const vec &dt, const double w) | 
| Here ![$dt = [y_t psi_t] $](form_58.png) . | |
| void | bayes (const vec &dt) | 
| Incremental Bayes rule. | |
| const epdf & | _epdf () const | 
| Returns a pointer to the epdf representing posterior density on parameters. Use with care! | |
| double | logpred (const vec &dt) const | 
| void | flatten (const BMEF *B) | 
| Flatten the posterior according to the given BMEF (of the same type!). | |
| enorm< ldmat > * | predictor (const RV &rv) | 
| Constructs a predictive density (marginal density on data). | |
| ivec | structure_est (egiw Eg0) | 
| Brute force structure estimation. | |
| virtual void | flatten (double nu0) | 
| Flatten the posterior as if to keep nu0 data. | |
| virtual void | bayesB (const mat &Dt) | 
| Batch Bayes rule (columns of Dt are observations). | |
| vec | logpred_m (const mat &dt) const | 
| Matrix version of logpred. | |
| const RV & | _rv () const | 
| access function | |
| double | _ll () const | 
| access function | |
| void | set_evalll (bool evl0) | 
| access function | |
| Protected Attributes | |
| egiw | est | 
| Posterior estimate of  in the form of Normal-inverse Wishart density. | |
| ldmat & | V | 
| cached value of est.V | |
| double & | nu | 
| cached value of est.nu | |
| double | frg | 
| forgetting factor | |
| double | last_lognc | 
| cached value of lognc() in the previous step (used in evaluation of ll) | |
| RV | rv | 
| Random variable of the posterior. | |
| double | ll | 
| Logarithm of marginalized data likelihood. | |
| bool | evalll | 
| If true, the filter will compute likelihood of the data record and store it in ll. Set to false if you want to save computational time. | |
Regression of the following kind:
![\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \]](form_61.png) 
 where unknown parameters rv are ![$[\theta r]$](form_51.png) , regression vector
, regression vector  is a known function of past outputs and exogeneous variables
 is a known function of past outputs and exogeneous variables  . Distrubances
. Distrubances  are supposed to be normally distributed:
 are supposed to be normally distributed: 
![\[ e_t \sim \mathcal{N}(0,1). \]](form_62.png) 
Extension for time-variant parameters  may be achived using exponential forgetting (Kulhavy and Zarrop, 1993). In such a case, the forgetting factor
 may be achived using exponential forgetting (Kulhavy and Zarrop, 1993). In such a case, the forgetting factor frg  should be given in the constructor. Time-invariant parameters are estimated for
 should be given in the constructor. Time-invariant parameters are estimated for frg = 1. 
| void ARX::bayes | ( | const vec & | dt | ) |  [inline, virtual] | 
| double ARX::logpred | ( | const vec & | dt | ) | const  [virtual] | 
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented from BM.
References egiw::_nu(), egiw::_V(), est, BM::evalll, BMEF::frg, BMEF::last_lognc, egiw::lognc(), nu, ldmat::opupdt(), egiw::pow(), and V.
| ivec ARX::structure_est | ( | egiw | Eg0 | ) | 
Brute force structure estimation.
References RV::count(), est, egiw::lognc(), and BM::rv.
 1.5.6
 1.5.6