00001 
00013 #ifndef EF_H
00014 #define EF_H
00015 
00016 #include <itpp/itbase.h>
00017 #include "../math/libDC.h"
00018 #include "libBM.h"
00019 #include "../itpp_ext.h"
00020 
00021 
00022 using namespace itpp;
00023 
00024 
00026 extern Uniform_RNG UniRNG;
00028 extern Normal_RNG NorRNG;
00030 extern Gamma_RNG GamRNG;
00031 
00038 class eEF : public epdf {
00039 public:
00040 
00042         eEF ( const RV &rv ) :epdf ( rv ) {};
00044         virtual double lognc() const =0;
00046         virtual void dupdate ( mat &v ) {it_error ( "Not implemented" );};
00048         virtual double evalpdflog_nn ( const vec &val ) const{it_error ( "Not implemented" );return 0.0;};
00050         virtual double evalpdflog ( const vec &val ) const {return evalpdflog_nn ( val )-lognc();}
00052         virtual vec evalpdflog ( const mat &Val ) const {
00053                 vec x ( Val.cols() );
00054                 for ( int i=0;i<Val.cols();i++ ) {x ( i ) =evalpdflog_nn ( Val.get_col ( i ) ) ;}
00055                 return x-lognc();
00056         }
00058         virtual void pow ( double p ) {it_error ( "Not implemented" );};
00059 };
00060 
00067 class mEF : public mpdf {
00068 
00069 public:
00071         mEF ( const RV &rv0, const RV &rvc0 ) :mpdf ( rv0,rvc0 ) {};
00072 };
00073 
00075 class BMEF : public BM {
00076 protected:
00078         double frg;
00080         double last_lognc;
00081 public:
00083         BMEF ( const RV &rv, double frg0=1.0 ) :BM ( rv ), frg ( frg0 ) {}
00085         BMEF ( const BMEF &B ) :BM ( B ), frg ( B.frg ), last_lognc ( B.last_lognc ) {}
00087         virtual void set_statistics ( const BMEF* BM0 ) {it_error ( "Not implemented" );};
00089         virtual void bayes ( const vec &data, const double w ) {};
00090         
00091         void bayes ( const vec &dt );
00093         virtual void flatten ( const BMEF * B ) {it_error ( "Not implemented" );}
00095         virtual void flatten ( double nu0 ) {it_error ( "Not implemented" );}
00096 };
00097 
00098 template<class sq_T>
00099 class mlnorm;
00100 
00106 template<class sq_T>
00107 class enorm : public eEF {
00108 protected:
00110         vec mu;
00112         sq_T R;
00114         int dim;
00115 public:
00117         enorm ( const RV &rv );
00119         void set_parameters ( const vec &mu,const sq_T &R );
00121         
00123         void dupdate ( mat &v,double nu=1.0 );
00124 
00125         vec sample() const;
00127         mat sample ( int N ) const;
00128         double eval ( const vec &val ) const ;
00129         double evalpdflog_nn ( const vec &val ) const;
00130         double lognc () const;
00131         vec mean() const {return mu;}
00132         mlnorm<sq_T>* condition ( const RV &rvn );
00133         enorm<sq_T>* marginal ( const RV &rv );
00134 
00136         vec& _mu() {return mu;}
00137 
00139         void set_mu ( const vec mu0 ) { mu=mu0;}
00140 
00142         sq_T& _R() {return R;}
00143 
00145 
00146 };
00147 
00154 class egiw : public eEF {
00155 protected:
00157         ldmat V;
00159         double nu;
00161         int xdim;
00163         int nPsi;
00164 public:
00166         egiw ( RV rv, mat V0, double nu0 ) : eEF ( rv ), V ( V0 ), nu ( nu0 ) {
00167                 xdim = rv.count() /V.rows();
00168                 it_assert_debug ( rv.count() ==xdim*V.rows(),"Incompatible V0." );
00169                 nPsi = V.rows()-xdim;
00170         }
00172         egiw ( RV rv, ldmat V0, double nu0 ) : eEF ( rv ), V ( V0 ), nu ( nu0 ) {
00173                 xdim = rv.count() /V.rows();
00174                 it_assert_debug ( rv.count() ==xdim*V.rows(),"Incompatible V0." );
00175                 nPsi = V.rows()-xdim;
00176         }
00177 
00178         vec sample() const;
00179         vec mean() const;
00180         void mean_mat ( mat &M, mat&R ) const;
00182         double evalpdflog_nn ( const vec &val ) const;
00183         double lognc () const;
00184 
00185         
00187         ldmat& _V() {return V;}
00189         double& _nu() {return nu;}
00190         void pow ( double p );
00191 };
00192 
00201 class eDirich: public eEF {
00202 protected:
00204         vec beta;
00205 public:
00207         eDirich ( const RV &rv, const vec &beta0 ) : eEF ( rv ),beta ( beta0 ) {it_assert_debug ( rv.count() ==beta.length(),"Incompatible statistics" ); };
00209         eDirich ( const eDirich &D0 ) : eEF ( D0.rv ),beta ( D0.beta ) {};
00210         vec sample() const {it_error ( "Not implemented" );return vec_1 ( 0.0 );};
00211         vec mean() const {return beta/sum ( beta );};
00213         double evalpdflog_nn ( const vec &val ) const {return ( beta-1 ) *log ( val );};
00214         double lognc () const {
00215                 double gam=sum ( beta );
00216                 double lgb=0.0;
00217                 for ( int i=0;i<beta.length();i++ ) {lgb+=lgamma ( beta ( i ) );}
00218                 return lgb-lgamma ( gam );
00219         };
00221         vec& _beta()  {return beta;}
00223         void set_parameters ( const vec &beta0 ) {
00224                 if ( beta0.length() !=beta.length() ) {
00225                         it_assert_debug ( rv.length() ==1,"Undefined" );
00226                         rv.set_size ( 0,beta0.length() );
00227                 }
00228                 beta= beta0;
00229         }
00230 };
00231 
00233 class multiBM : public BMEF {
00234 protected:
00236         eDirich est;
00238         vec β
00239 public:
00241         multiBM ( const RV &rv, const vec beta0 ) : BMEF ( rv ),est ( rv,beta0 ),beta ( est._beta() ) {last_lognc=est.lognc();}
00243         multiBM ( const multiBM &B ) : BMEF ( B ),est ( rv,B.beta ),beta ( est._beta() ) {}
00245         void set_statistics ( const BM* mB0 ) {const multiBM* mB=dynamic_cast<const multiBM*> ( mB0 ); beta=mB->beta;}
00246         void bayes ( const vec &dt ) {
00247                 if ( frg<1.0 ) {beta*=frg;last_lognc=est.lognc();}
00248                 beta+=dt;
00249                 if ( evalll ) {ll=est.lognc()-last_lognc;}
00250         }
00251         double logpred ( const vec &dt ) const {
00252                 eDirich pred ( est );
00253                 vec &beta = pred._beta();
00254 
00255                 double lll;
00256                 if ( frg<1.0 )
00257                         {beta*=frg;lll=pred.lognc();}
00258                 else
00259                         if ( evalll ) {lll=last_lognc;}
00260                         else{lll=pred.lognc();}
00261 
00262                 beta+=dt;
00263                 return pred.lognc()-lll;
00264         }
00265         void flatten ( const BMEF* B ) {
00266                 const eDirich* E=dynamic_cast<const eDirich*> ( B );
00267                 
00268                 const vec &Eb=const_cast<eDirich*> ( E )->_beta();
00269                 est.pow ( sum ( beta ) /sum ( Eb ) );
00270                 if ( evalll ) {last_lognc=est.lognc();}
00271         }
00272         const epdf& _epdf() const {return est;};
00273         void set_parameters ( const vec &beta0 ) {
00274                 est.set_parameters ( beta0 );
00275                 rv = est._rv();
00276                 if ( evalll ) {last_lognc=est.lognc();}
00277         }
00278 };
00279 
00289 class egamma : public eEF {
00290 protected:
00292         vec alpha;
00294         vec beta;
00295 public :
00297         egamma ( const RV &rv ) :eEF ( rv ) {};
00299         void set_parameters ( const vec &a, const vec &b ) {alpha=a,beta=b;};
00300         vec sample() const;
00302 
00303         double evalpdflog ( const vec &val ) const;
00304         double lognc () const;
00306         void _param ( vec* &a, vec* &b ) {a=αb=β};
00307         vec mean() const {vec pom ( alpha ); pom/=beta; return pom;}
00308 };
00309 
00311 
00312 
00313 
00314 
00315 
00316 
00318 
00319 
00320 
00321 
00322 
00323 
00324 
00326 
00327 class euni: public epdf {
00328 protected:
00330         vec low;
00332         vec high;
00334         vec distance;
00336         double nk;
00338         double lnk;
00339 public:
00341         euni ( const RV rv ) :epdf ( rv ) {}
00342         double eval ( const vec &val ) const  {return nk;}
00343         double evalpdflog ( const vec &val ) const  {return lnk;}
00344         vec sample() const {
00345                 vec smp ( rv.count() );
00346 #pragma omp critical
00347                 UniRNG.sample_vector ( rv.count(),smp );
00348                 return low+elem_mult ( distance,smp );
00349         }
00351         void set_parameters ( const vec &low0, const vec &high0 ) {
00352                 distance = high0-low0;
00353                 it_assert_debug ( min ( distance ) >0.0,"bad support" );
00354                 low = low0;
00355                 high = high0;
00356                 nk = prod ( 1.0/distance );
00357                 lnk = log ( nk );
00358         }
00359         vec mean() const {vec pom=high; pom-=low; pom/=2.0; return pom;}
00360 };
00361 
00362 
00368 template<class sq_T>
00369 class mlnorm : public mEF {
00371         enorm<sq_T> epdf;
00372         mat A;
00373         vec mu_const;
00374         vec& _mu; 
00375 public:
00377         mlnorm (const RV &rv, const RV &rvc );
00379         void set_parameters ( const  mat &A, const vec &mu0, const sq_T &R );
00381         vec samplecond (const vec &cond, double &lik );
00383         mat samplecond (const vec &cond, vec &lik, int n );
00385         void condition (const vec &cond );
00386 };
00387 
00397 class mgamma : public mEF {
00398 protected:
00400         egamma epdf;
00402         double k;
00404         vec* _beta;
00405 
00406 public:
00408         mgamma ( const RV &rv,const RV &rvc );
00410         void set_parameters ( double k );
00411         void condition ( const vec &val ) {*_beta=k/val;};
00412 };
00413 
00425 class mgamma_fix : public mgamma {
00426 protected:
00428         double l;
00430         vec refl;
00431 public:
00433         mgamma_fix ( const RV &rv,const RV &rvc ) : mgamma ( rv,rvc ),refl ( rv.count() ) {};
00435         void set_parameters ( double k0 , vec ref0, double l0 ) {
00436                 mgamma::set_parameters ( k0 );
00437                 refl=pow ( ref0,1.0-l0 );l=l0;
00438         };
00439 
00440         void condition ( const vec &val ) {vec mean=elem_mult ( refl,pow ( val,l ) ); *_beta=k/mean;};
00441 };
00442 
00444 enum RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
00450 class eEmp: public epdf {
00451 protected :
00453         int n;
00455         vec w;
00457         Array<vec> samples;
00458 public:
00460         eEmp ( const RV &rv0 ,int n0 ) :epdf ( rv0 ),n ( n0 ),w ( n ),samples ( n ) {};
00462         void set_parameters ( const vec &w0, const epdf* pdf0 );
00464         void set_samples ( const epdf* pdf0 );
00466         vec& _w()  {return w;};
00468         Array<vec>& _samples() {return samples;};
00470         ivec resample ( RESAMPLING_METHOD method = SYSTEMATIC );
00472         vec sample() const {it_error ( "Not implemented" );return 0;}
00474         double evalpdflog ( const vec &val ) const {it_error ( "Not implemented" );return 0.0;}
00475         vec mean() const {
00476                 vec pom=zeros ( rv.count() );
00477                 for ( int i=0;i<n;i++ ) {pom+=samples ( i ) *w ( i );}
00478                 return pom;
00479         }
00480 };
00481 
00482 
00484 
00485 template<class sq_T>
00486 enorm<sq_T>::enorm ( const RV &rv ) :eEF ( rv ), mu ( rv.count() ),R ( rv.count() ),dim ( rv.count() ) {};
00487 
00488 template<class sq_T>
00489 void enorm<sq_T>::set_parameters ( const vec &mu0, const sq_T &R0 ) {
00490 
00491         mu = mu0;
00492         R = R0;
00493 };
00494 
00495 template<class sq_T>
00496 void enorm<sq_T>::dupdate ( mat &v, double nu ) {
00497         
00498 };
00499 
00500 
00501 
00502 
00503 
00504 
00505 template<class sq_T>
00506 vec enorm<sq_T>::sample() const {
00507         vec x ( dim );
00508         NorRNG.sample_vector ( dim,x );
00509         vec smp = R.sqrt_mult ( x );
00510 
00511         smp += mu;
00512         return smp;
00513 };
00514 
00515 template<class sq_T>
00516 mat enorm<sq_T>::sample ( int N ) const {
00517         mat X ( dim,N );
00518         vec x ( dim );
00519         vec pom;
00520         int i;
00521 
00522         for ( i=0;i<N;i++ ) {
00523                 NorRNG.sample_vector ( dim,x );
00524                 pom = R.sqrt_mult ( x );
00525                 pom +=mu;
00526                 X.set_col ( i, pom );
00527         }
00528 
00529         return X;
00530 };
00531 
00532 template<class sq_T>
00533 double enorm<sq_T>::eval ( const vec &val ) const {
00534         double pdfl,e;
00535         pdfl = evalpdflog ( val );
00536         e = exp ( pdfl );
00537         return e;
00538 };
00539 
00540 template<class sq_T>
00541 double enorm<sq_T>::evalpdflog_nn ( const vec &val ) const {
00542         
00543         return  -0.5* ( R.invqform ( mu-val ) );
00544 };
00545 
00546 template<class sq_T>
00547 inline double enorm<sq_T>::lognc () const {
00548         
00549         return 0.5* ( R.cols() * 1.83787706640935 +R.logdet() );
00550 };
00551 
00552 template<class sq_T>
00553 mlnorm<sq_T>::mlnorm ( const RV &rv0, const RV &rvc0 ) :mEF ( rv0,rvc0 ),epdf ( rv0 ),A ( rv0.count(),rv0.count() ),_mu ( epdf._mu() ) {
00554         ep =&epdf;
00555 }
00556 
00557 template<class sq_T>
00558 void mlnorm<sq_T>::set_parameters ( const mat &A0, const vec &mu0, const sq_T &R0 ) {
00559         epdf.set_parameters ( zeros ( rv.count() ),R0 );
00560         A = A0;
00561         mu_const = mu0;
00562 }
00563 
00564 template<class sq_T>
00565 vec mlnorm<sq_T>::samplecond (const  vec &cond, double &lik ) {
00566         this->condition ( cond );
00567         vec smp = epdf.sample();
00568         lik = epdf.eval ( smp );
00569         return smp;
00570 }
00571 
00572 template<class sq_T>
00573 mat mlnorm<sq_T>::samplecond (const vec &cond, vec &lik, int n ) {
00574         int i;
00575         int dim = rv.count();
00576         mat Smp ( dim,n );
00577         vec smp ( dim );
00578         this->condition ( cond );
00579 
00580         for ( i=0; i<n; i++ ) {
00581                 smp = epdf.sample();
00582                 lik ( i ) = epdf.eval ( smp );
00583                 Smp.set_col ( i ,smp );
00584         }
00585 
00586         return Smp;
00587 }
00588 
00589 template<class sq_T>
00590 void mlnorm<sq_T>::condition (const vec &cond ) {
00591         _mu = A*cond + mu_const;
00592 
00593 }
00594 
00595 template<class sq_T>
00596 enorm<sq_T>* enorm<sq_T>::marginal ( const RV &rvn ) {
00597         ivec irvn = rvn.dataind ( rv );
00598 
00599         sq_T Rn ( R,irvn );
00600         enorm<sq_T>* tmp = new enorm<sq_T>( rvn );
00601         tmp->set_parameters ( mu ( irvn ), Rn );
00602         return tmp;
00603 }
00604 
00605 template<class sq_T>
00606 mlnorm<sq_T>* enorm<sq_T>::condition ( const RV &rvn ) {
00607 
00608         RV rvc = rv.subt ( rvn );
00609         it_assert_debug ( ( rvc.count() +rvn.count() ==rv.count() ),"wrong rvn" );
00610         
00611         ivec irvn = rvn.dataind ( rv );
00612         ivec irvc = rvc.dataind ( rv );
00613         ivec perm=concat ( irvn , irvc );
00614         sq_T Rn ( R,perm );
00615 
00616         
00617         mat S=R.to_mat();
00618         
00619         int n=rvn.count()-1;
00620         int end=R.rows()-1;
00621         mat S11 = S.get ( 0,n, 0, n );
00622         mat S12 = S.get ( rvn.count(), end, 0, n );
00623         mat S22 = S.get ( rvn.count(), end, rvn.count(), end );
00624 
00625         vec mu1 = mu ( irvn );
00626         vec mu2 = mu ( irvc );
00627         mat A=S12*inv ( S22 );
00628         sq_T R_n ( S11 - A *S12.T() );
00629 
00630         mlnorm<sq_T>* tmp=new mlnorm<sq_T> ( rvn,rvc );
00631 
00632         tmp->set_parameters ( A,mu1-A*mu2,R_n );
00633         return tmp;
00634 }
00635 
00637 
00638 
00639 #endif //EF_H