#include <arx.h>


Public Member Functions | |
| ARX (const RV &rv, const mat &V0, const double &nu0, const double frg0=1.0) | |
| Full constructor.  | |
| ARX (const ARX &A0) | |
| Copy constructor.  | |
| ARX * | _copy_ (bool changerv=false) | 
| Auxiliary function.  | |
| void | set_parameters (const ldmat &V0, const double &nu0) | 
| Set sufficient statistics.  | |
| void | set_statistics (const BMEF *BM0) | 
| get statistics from another model  | |
| void | get_parameters (mat &V0, double &nu0) | 
| Returns sufficient statistics.  | |
| void | bayes (const vec &dt, const double w) | 
Here  .  | |
| void | bayes (const vec &dt) | 
| Incremental Bayes rule.   | |
| const epdf & | _epdf () const | 
| Returns a pointer to the epdf representing posterior density on parameters. Use with care!  | |
| double | logpred (const vec &dt) const | 
| void | flatten (const BMEF *B) | 
| Flatten the posterior according to the given BMEF (of the same type!).  | |
| enorm< ldmat > * | predictor (const RV &rv) | 
| Constructs a predictive density (marginal density on data).  | |
| ivec | structure_est (egiw Eg0) | 
| Brute force structure estimation.   | |
| virtual void | flatten (double nu0) | 
| Flatten the posterior as if to keep nu0 data.  | |
| virtual void | bayesB (const mat &Dt) | 
| Batch Bayes rule (columns of Dt are observations).  | |
| vec | logpred_m (const mat &dt) const | 
| Matrix version of logpred.  | |
| const RV & | _rv () const | 
| access function  | |
| double | _ll () const | 
| access function  | |
| void | set_evalll (bool evl0) | 
| access function  | |
Protected Attributes | |
| egiw | est | 
Posterior estimate of   in the form of Normal-inverse Wishart density.  | |
| ldmat & | V | 
| cached value of est.V  | |
| double & | nu | 
| cached value of est.nu  | |
| double | frg | 
| forgetting factor  | |
| double | last_lognc | 
cached value of lognc() in the previous step (used in evaluation of ll )  | |
| RV | rv | 
| Random variable of the posterior.  | |
| double | ll | 
| Logarithm of marginalized data likelihood.  | |
| bool | evalll | 
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time.  | |
Regression of the following kind:
 where unknown parameters rv are 
, regression vector 
 is a known function of past outputs and exogeneous variables 
. Distrubances 
 are supposed to be normally distributed: 
Extension for time-variant parameters 
 may be achived using exponential forgetting (Kulhavy and Zarrop, 1993). In such a case, the forgetting factor frg 
 should be given in the constructor. Time-invariant parameters are estimated for frg = 1. 
| void ARX::bayes | ( | const vec & | dt | ) |  [inline, virtual] | 
        
| double ARX::logpred | ( | const vec & | dt | ) |  const [virtual] | 
        
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented from BM.
References egiw::_nu(), egiw::_V(), est, BM::evalll, BMEF::frg, BMEF::last_lognc, egiw::lognc(), nu, ldmat::opupdt(), egiw::pow(), and V.
| ivec ARX::structure_est | ( | egiw | Eg0 | ) | 
Brute force structure estimation.
References RV::count(), est, egiw::lognc(), and BM::rv.
 1.5.6