00001
00013 #ifndef EF_H
00014 #define EF_H
00015
00016 #include <itpp/itbase.h>
00017 #include "../math/libDC.h"
00018 #include "libBM.h"
00019 #include "../itpp_ext.h"
00020
00021
00022 using namespace itpp;
00023
00024
00026 extern Uniform_RNG UniRNG;
00028 extern Normal_RNG NorRNG;
00030 extern Gamma_RNG GamRNG;
00031
00038 class eEF : public epdf {
00039 public:
00040
00042 eEF ( const RV &rv ) :epdf ( rv ) {};
00044 virtual double lognc() const =0;
00046 virtual void dupdate ( mat &v ) {it_error ( "Not implemented" );};
00048 virtual double evalpdflog_nn ( const vec &val ) const{it_error ( "Not implemented" );return 0.0;};
00050 virtual double evalpdflog ( const vec &val ) const {double tmp;tmp= evalpdflog_nn ( val )-lognc();it_assert_debug(std::isfinite(tmp),"why?"); return tmp;}
00052 virtual vec evalpdflog ( const mat &Val ) const {
00053 vec x ( Val.cols() );
00054 for ( int i=0;i<Val.cols();i++ ) {x ( i ) =evalpdflog_nn ( Val.get_col ( i ) ) ;}
00055 return x-lognc();
00056 }
00058 virtual void pow ( double p ) {it_error ( "Not implemented" );};
00059 };
00060
00067 class mEF : public mpdf {
00068
00069 public:
00071 mEF ( const RV &rv0, const RV &rvc0 ) :mpdf ( rv0,rvc0 ) {};
00072 };
00073
00075 class BMEF : public BM {
00076 protected:
00078 double frg;
00080 double last_lognc;
00081 public:
00083 BMEF ( const RV &rv, double frg0=1.0 ) :BM ( rv ), frg ( frg0 ) {}
00085 BMEF ( const BMEF &B ) :BM ( B ), frg ( B.frg ), last_lognc ( B.last_lognc ) {}
00087 virtual void set_statistics ( const BMEF* BM0 ) {it_error ( "Not implemented" );};
00089 virtual void bayes ( const vec &data, const double w ) {};
00090
00091 void bayes ( const vec &dt );
00093 virtual void flatten ( const BMEF * B ) {it_error ( "Not implemented" );}
00095
00096
00097 BMEF* _copy_ ( bool changerv=false ) {it_error ( "function _copy_ not implemented for this BM" ); return NULL;};
00098 };
00099
00100 template<class sq_T>
00101 class mlnorm;
00102
00108 template<class sq_T>
00109 class enorm : public eEF {
00110 protected:
00112 vec mu;
00114 sq_T R;
00116 int dim;
00117 public:
00119 enorm ( const RV &rv );
00121 void set_parameters ( const vec &mu,const sq_T &R );
00123
00125 void dupdate ( mat &v,double nu=1.0 );
00126
00127 vec sample() const;
00129 mat sample ( int N ) const;
00130 double eval ( const vec &val ) const ;
00131 double evalpdflog_nn ( const vec &val ) const;
00132 double lognc () const;
00133 vec mean() const {return mu;}
00134
00135 mpdf* condition ( const RV &rvn ) const ;
00136
00137 epdf* marginal ( const RV &rv ) const;
00138
00140 vec& _mu() {return mu;}
00141
00143 void set_mu ( const vec mu0 ) { mu=mu0;}
00144
00146 sq_T& _R() {return R;}
00147
00149
00150 };
00151
00158 class egiw : public eEF {
00159 protected:
00161 ldmat V;
00163 double nu;
00165 int xdim;
00167 int nPsi;
00168 public:
00170 egiw ( RV rv, mat V0, double nu0=-1.0 ) : eEF ( rv ), V ( V0 ), nu ( nu0 ) {
00171 xdim = rv.count() /V.rows();
00172 it_assert_debug ( rv.count() ==xdim*V.rows(),"Incompatible V0." );
00173 nPsi = V.rows()-xdim;
00174
00175 if (nu0<0){
00176 nu = 0.1 +nPsi +2*xdim +2;
00177
00178 }
00179 }
00181 egiw ( RV rv, ldmat V0, double nu0=-1.0 ) : eEF ( rv ), V ( V0 ), nu ( nu0 ) {
00182 xdim = rv.count() /V.rows();
00183 it_assert_debug ( rv.count() ==xdim*V.rows(),"Incompatible V0." );
00184 nPsi = V.rows()-xdim;
00185 if (nu0<0){
00186 nu = 0.1 +nPsi +2*xdim +2;
00187
00188 }
00189 }
00190
00191 vec sample() const;
00192 vec mean() const;
00193 void mean_mat ( mat &M, mat&R ) const;
00195 double evalpdflog_nn ( const vec &val ) const;
00196 double lognc () const;
00197
00198
00200 ldmat& _V() {return V;}
00202 const ldmat& _V() const {return V;}
00204 double& _nu() {return nu;}
00205 const double& _nu() const {return nu;}
00206 void pow ( double p ) {V*=p;nu*=p;};
00207 };
00208
00217 class eDirich: public eEF {
00218 protected:
00220 vec beta;
00221 public:
00223 eDirich ( const RV &rv, const vec &beta0 ) : eEF ( rv ),beta ( beta0 ) {it_assert_debug ( rv.count() ==beta.length(),"Incompatible statistics" ); };
00225 eDirich ( const eDirich &D0 ) : eEF ( D0.rv ),beta ( D0.beta ) {};
00226 vec sample() const {it_error ( "Not implemented" );return vec_1 ( 0.0 );};
00227 vec mean() const {return beta/sum ( beta );};
00229 double evalpdflog_nn ( const vec &val ) const {return ( beta-1 ) *log ( val );};
00230 double lognc () const {
00231 double gam=sum ( beta );
00232 double lgb=0.0;
00233 for ( int i=0;i<beta.length();i++ ) {lgb+=lgamma ( beta ( i ) );}
00234 return lgb-lgamma ( gam );
00235 };
00237 vec& _beta() {return beta;}
00239 void set_parameters ( const vec &beta0 ) {
00240 if ( beta0.length() !=beta.length() ) {
00241 it_assert_debug ( rv.length() ==1,"Undefined" );
00242 rv.set_size ( 0,beta0.length() );
00243 }
00244 beta= beta0;
00245 }
00246 };
00247
00249 class multiBM : public BMEF {
00250 protected:
00252 eDirich est;
00254 vec β
00255 public:
00257 multiBM ( const RV &rv, const vec beta0 ) : BMEF ( rv ),est ( rv,beta0 ),beta ( est._beta() ) {last_lognc=est.lognc();}
00259 multiBM ( const multiBM &B ) : BMEF ( B ),est ( rv,B.beta ),beta ( est._beta() ) {}
00261 void set_statistics ( const BM* mB0 ) {const multiBM* mB=dynamic_cast<const multiBM*> ( mB0 ); beta=mB->beta;}
00262 void bayes ( const vec &dt ) {
00263 if ( frg<1.0 ) {beta*=frg;last_lognc=est.lognc();}
00264 beta+=dt;
00265 if ( evalll ) {ll=est.lognc()-last_lognc;}
00266 }
00267 double logpred ( const vec &dt ) const {
00268 eDirich pred ( est );
00269 vec &beta = pred._beta();
00270
00271 double lll;
00272 if ( frg<1.0 )
00273 {beta*=frg;lll=pred.lognc();}
00274 else
00275 if ( evalll ) {lll=last_lognc;}
00276 else{lll=pred.lognc();}
00277
00278 beta+=dt;
00279 return pred.lognc()-lll;
00280 }
00281 void flatten ( const BMEF* B ) {
00282 const multiBM* E=dynamic_cast<const multiBM*> ( B );
00283
00284 const vec &Eb=E->beta;
00285 beta*= ( sum ( Eb ) /sum ( beta ) );
00286 if ( evalll ) {last_lognc=est.lognc();}
00287 }
00288 const epdf& _epdf() const {return est;};
00289 const eDirich* _e() const {return &est;};
00290 void set_parameters ( const vec &beta0 ) {
00291 est.set_parameters ( beta0 );
00292 rv = est._rv();
00293 if ( evalll ) {last_lognc=est.lognc();}
00294 }
00295 };
00296
00306 class egamma : public eEF {
00307 protected:
00309 vec alpha;
00311 vec beta;
00312 public :
00314 egamma ( const RV &rv ) :eEF ( rv ) {};
00316 void set_parameters ( const vec &a, const vec &b ) {alpha=a,beta=b;};
00317 vec sample() const;
00319
00320 double evalpdflog ( const vec &val ) const;
00321 double lognc () const;
00323 void _param ( vec* &a, vec* &b ) {a=αb=β};
00324 vec mean() const {vec pom ( alpha ); pom/=beta; return pom;}
00325 };
00326
00328
00329
00330
00331
00332
00333
00335
00336
00337
00338
00339
00340
00341
00343
00344 class euni: public epdf {
00345 protected:
00347 vec low;
00349 vec high;
00351 vec distance;
00353 double nk;
00355 double lnk;
00356 public:
00358 euni ( const RV rv ) :epdf ( rv ) {}
00359 double eval ( const vec &val ) const {return nk;}
00360 double evalpdflog ( const vec &val ) const {return lnk;}
00361 vec sample() const {
00362 vec smp ( rv.count() );
00363 #pragma omp critical
00364 UniRNG.sample_vector ( rv.count(),smp );
00365 return low+elem_mult ( distance,smp );
00366 }
00368 void set_parameters ( const vec &low0, const vec &high0 ) {
00369 distance = high0-low0;
00370 it_assert_debug ( min ( distance ) >0.0,"bad support" );
00371 low = low0;
00372 high = high0;
00373 nk = prod ( 1.0/distance );
00374 lnk = log ( nk );
00375 }
00376 vec mean() const {vec pom=high; pom-=low; pom/=2.0; return pom;}
00377 };
00378
00379
00385 template<class sq_T>
00386 class mlnorm : public mEF {
00387 protected:
00389 enorm<sq_T> epdf;
00390 mat A;
00391 vec mu_const;
00392 vec& _mu;
00393 public:
00395 mlnorm ( const RV &rv, const RV &rvc );
00397 void set_parameters ( const mat &A, const vec &mu0, const sq_T &R );
00398
00399
00400
00401
00403 void condition ( const vec &cond );
00404
00406 vec& _mu_const() {return mu_const;}
00408 mat& _A() {return A;}
00410 mat _R() {return epdf._R().to_mat();}
00411
00412 template<class sq_M>
00413 friend std::ostream &operator<< ( std::ostream &os, mlnorm<sq_M> &ml );
00414 };
00415
00418 class mlstudent : public mlnorm<ldmat> {
00419 protected:
00420 ldmat Lambda;
00421 ldmat &_R;
00422 ldmat Re;
00423 public:
00424 mlstudent ( const RV &rv0, const RV &rvc0 ) :mlnorm<ldmat> ( rv0,rvc0 ),
00425 Lambda ( rv0.count() ),
00426 _R ( epdf._R() ) {}
00427 void set_parameters ( const mat &A0, const vec &mu0, const ldmat &R0, const ldmat& Lambda0) {
00428 epdf.set_parameters ( zeros ( rv.count() ),Lambda );
00429 A = A0;
00430 mu_const = mu0;
00431 Re=R0;
00432 Lambda = Lambda0;
00433 }
00434 void condition ( const vec &cond ) {
00435 _mu = A*cond + mu_const;
00436 double zeta;
00437
00438 if ((cond.length()+1)==Lambda.rows()){
00439 zeta = Lambda.invqform ( concat(cond, vec_1(1.0)) );
00440 } else {
00441 zeta = Lambda.invqform ( cond );
00442 }
00443 _R = Re;
00444 _R*=( 1+zeta );
00445 };
00446
00447 };
00457 class mgamma : public mEF {
00458 protected:
00460 egamma epdf;
00462 double k;
00464 vec* _beta;
00465
00466 public:
00468 mgamma ( const RV &rv,const RV &rvc );
00470 void set_parameters ( double k );
00471 void condition ( const vec &val ) {*_beta=k/val;};
00472 };
00473
00485 class mgamma_fix : public mgamma {
00486 protected:
00488 double l;
00490 vec refl;
00491 public:
00493 mgamma_fix ( const RV &rv,const RV &rvc ) : mgamma ( rv,rvc ),refl ( rv.count() ) {};
00495 void set_parameters ( double k0 , vec ref0, double l0 ) {
00496 mgamma::set_parameters ( k0 );
00497 refl=pow ( ref0,1.0-l0 );l=l0;
00498 };
00499
00500 void condition ( const vec &val ) {vec mean=elem_mult ( refl,pow ( val,l ) ); *_beta=k/mean;};
00501 };
00502
00504 enum RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
00510 class eEmp: public epdf {
00511 protected :
00513 int n;
00515 vec w;
00517 Array<vec> samples;
00518 public:
00520 eEmp ( const RV &rv0 ,int n0 ) :epdf ( rv0 ),n ( n0 ),w ( n ),samples ( n ) {};
00522 void set_parameters ( const vec &w0, const epdf* pdf0 );
00524 void set_samples ( const epdf* pdf0 );
00526 void set_n ( int n0, bool copy=true ){w.set_size(n0,copy);samples.set_size(n0,copy);};
00528 vec& _w() {return w;};
00530 const vec& _w() const {return w;};
00532 Array<vec>& _samples() {return samples;};
00534 const Array<vec>& _samples() const {return samples;};
00536 ivec resample ( RESAMPLING_METHOD method = SYSTEMATIC );
00538 vec sample() const {it_error ( "Not implemented" );return 0;}
00540 double evalpdflog ( const vec &val ) const {it_error ( "Not implemented" );return 0.0;}
00541 vec mean() const {
00542 vec pom=zeros ( rv.count() );
00543 for ( int i=0;i<n;i++ ) {pom+=samples ( i ) *w ( i );}
00544 return pom;
00545 }
00546 };
00547
00548
00550
00551 template<class sq_T>
00552 enorm<sq_T>::enorm ( const RV &rv ) :eEF ( rv ), mu ( rv.count() ),R ( rv.count() ),dim ( rv.count() ) {};
00553
00554 template<class sq_T>
00555 void enorm<sq_T>::set_parameters ( const vec &mu0, const sq_T &R0 ) {
00556
00557 mu = mu0;
00558 R = R0;
00559 };
00560
00561 template<class sq_T>
00562 void enorm<sq_T>::dupdate ( mat &v, double nu ) {
00563
00564 };
00565
00566
00567
00568
00569
00570
00571 template<class sq_T>
00572 vec enorm<sq_T>::sample() const {
00573 vec x ( dim );
00574 NorRNG.sample_vector ( dim,x );
00575 vec smp = R.sqrt_mult ( x );
00576
00577 smp += mu;
00578 return smp;
00579 };
00580
00581 template<class sq_T>
00582 mat enorm<sq_T>::sample ( int N ) const {
00583 mat X ( dim,N );
00584 vec x ( dim );
00585 vec pom;
00586 int i;
00587
00588 for ( i=0;i<N;i++ ) {
00589 NorRNG.sample_vector ( dim,x );
00590 pom = R.sqrt_mult ( x );
00591 pom +=mu;
00592 X.set_col ( i, pom );
00593 }
00594
00595 return X;
00596 };
00597
00598 template<class sq_T>
00599 double enorm<sq_T>::eval ( const vec &val ) const {
00600 double pdfl,e;
00601 pdfl = evalpdflog ( val );
00602 e = exp ( pdfl );
00603 return e;
00604 };
00605
00606 template<class sq_T>
00607 double enorm<sq_T>::evalpdflog_nn ( const vec &val ) const {
00608
00609 double tmp=-0.5* ( R.invqform ( mu-val ) );
00610 return tmp;
00611 };
00612
00613 template<class sq_T>
00614 inline double enorm<sq_T>::lognc () const {
00615
00616 double tmp=0.5* ( R.cols() * 1.83787706640935 +R.logdet() );
00617 return tmp;
00618 };
00619
00620 template<class sq_T>
00621 mlnorm<sq_T>::mlnorm ( const RV &rv0, const RV &rvc0 ) :mEF ( rv0,rvc0 ),epdf ( rv0 ),A ( rv0.count(),rv0.count() ),_mu ( epdf._mu() ) {
00622 ep =&epdf;
00623 }
00624
00625 template<class sq_T>
00626 void mlnorm<sq_T>::set_parameters ( const mat &A0, const vec &mu0, const sq_T &R0 ) {
00627 epdf.set_parameters ( zeros ( rv.count() ),R0 );
00628 A = A0;
00629 mu_const = mu0;
00630 }
00631
00632
00633
00634
00635
00636
00637
00638
00639
00640
00641
00642
00643
00644
00645
00646
00647
00648
00649
00650
00651
00652
00653
00654
00655
00656
00657 template<class sq_T>
00658 void mlnorm<sq_T>::condition ( const vec &cond ) {
00659 _mu = A*cond + mu_const;
00660
00661 }
00662
00663 template<class sq_T>
00664 epdf* enorm<sq_T>::marginal ( const RV &rvn ) const {
00665 ivec irvn = rvn.dataind ( rv );
00666
00667 sq_T Rn ( R,irvn );
00668 enorm<sq_T>* tmp = new enorm<sq_T> ( rvn );
00669 tmp->set_parameters ( mu ( irvn ), Rn );
00670 return tmp;
00671 }
00672
00673 template<class sq_T>
00674 mpdf* enorm<sq_T>::condition ( const RV &rvn ) const {
00675
00676 RV rvc = rv.subt ( rvn );
00677 it_assert_debug ( ( rvc.count() +rvn.count() ==rv.count() ),"wrong rvn" );
00678
00679 ivec irvn = rvn.dataind ( rv );
00680 ivec irvc = rvc.dataind ( rv );
00681 ivec perm=concat ( irvn , irvc );
00682 sq_T Rn ( R,perm );
00683
00684
00685 mat S=Rn.to_mat();
00686
00687 int n=rvn.count()-1;
00688 int end=R.rows()-1;
00689 mat S11 = S.get ( 0,n, 0, n );
00690 mat S12 = S.get ( 0, n , rvn.count(), end );
00691 mat S22 = S.get ( rvn.count(), end, rvn.count(), end );
00692
00693 vec mu1 = mu ( irvn );
00694 vec mu2 = mu ( irvc );
00695 mat A=S12*inv ( S22 );
00696 sq_T R_n ( S11 - A *S12.T() );
00697
00698 mlnorm<sq_T>* tmp=new mlnorm<sq_T> ( rvn,rvc );
00699
00700 tmp->set_parameters ( A,mu1-A*mu2,R_n );
00701 return tmp;
00702 }
00703
00705
00706 template<class sq_T>
00707 std::ostream &operator<< ( std::ostream &os, mlnorm<sq_T> &ml ) {
00708 os << "A:"<< ml.A<<endl;
00709 os << "mu:"<< ml.mu_const<<endl;
00710 os << "R:" << ml.epdf._R().to_mat() <<endl;
00711 return os;
00712 };
00713
00714 #endif //EF_H