#include <libPF.h>


Public Member Functions | |
| PF (const RV &rv0, mpdf &par0, mpdf &obs0, int n0) | |
| Default constructor.  | |
| void | set_est (const epdf &epdf0) | 
| Set posterior density by sampling from epdf0.  | |
| void | bayes (const vec &dt) | 
| Incremental Bayes rule.   | |
| vec * | __w () | 
| access function  | |
| virtual void | bayesB (const mat &Dt) | 
| Batch Bayes rule (columns of Dt are observations).  | |
| virtual const epdf & | _epdf () const =0 | 
| Returns a reference to the epdf representing posterior density on parameters.  | |
| virtual const epdf * | _e () const =0 | 
| Returns a pointer to the epdf representing posterior density on parameters. Use with care!  | |
| virtual double | logpred (const vec &dt) const | 
| vec | logpred_m (const mat &dt) const | 
| Matrix version of logpred.  | |
| virtual epdf * | predictor (const RV &rv) const | 
| Constructs a predictive density (marginal density on data).  | |
| const RV & | _rv () const | 
| access function  | |
| double | _ll () const | 
| access function  | |
| void | set_evalll (bool evl0) | 
| access function  | |
| virtual BM * | _copy_ (bool changerv=false) | 
Protected Attributes | |
| int | n | 
| number of particles;  | |
| eEmp | est | 
| posterior density  | |
| vec & | _w | 
pointer into eEmp  | |
| Array< vec > & | _samples | 
pointer into eEmp  | |
| mpdf & | par | 
| Parameter evolution model.  | |
| mpdf & | obs | 
| Observation model.  | |
| RV | rv | 
| Random variable of the posterior.  | |
| double | ll | 
| Logarithm of marginalized data likelihood.  | |
| bool | evalll | 
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time.  | |
Posterior density is represented by a weighted empirical density (eEmp ). 
| void PF::bayes | ( | const vec & | dt | ) |  [virtual] | 
        
Incremental Bayes rule.
| dt | vector of input data | 
Implements BM.
Reimplemented in MPF< BM_T >.
References _samples, _w, est, mpdf::evallogcond(), n, obs, par, eEmp::resample(), and mpdf::samplecond().
| virtual double BM::logpred | ( | const vec & | dt | ) |  const [inline, virtual, inherited] | 
        
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in ARX, MixEF, and multiBM.
Referenced by BM::logpred_m().
| virtual BM* BM::_copy_ | ( | bool |  changerv = false           | 
          ) |  [inline, virtual, inherited] | 
        
 1.5.6