Q and delta u.  
More...


Public Member Functions | |
| EKFCh_du_kQ (RV rx, RV ry, RV ru, RV rC) | |
| Default constructor.  | |
| void | set_ref (const chmat &Qref0) | 
| void | condition (const vec &val) | 
Substitute val for rvc.  | |
| void | set_parameters (diffbifn *pfxu, diffbifn *phxu, const chmat Q0, const chmat R0) | 
| Set nonlinear functions for mean values and covariance matrices.  | |
| void | set_parameters (const mat &A0, const mat &B0, const mat &C0, const mat &D0, const chmat &R0, const chmat &Q0) | 
| Set parameters with check of relevance.  | |
| void | bayes (const vec &dt) | 
| Here dt = [yt;ut] of appropriate dimensions.  | |
| void | set_est (const vec &mu0, const chmat &P0) | 
| Set estimate values, used e.g. in initialization.  | |
| const epdf & | _epdf () const | 
| access function  | |
| const enorm< chmat > * | _e () const | 
| Returns a pointer to the epdf representing posterior density on parameters. Use with care!  | |
| mat & | __K () | 
| access function  | |
| vec | _dP () | 
| access function  | |
| virtual void | bayesB (const mat &Dt) | 
| Batch Bayes rule (columns of Dt are observations).  | |
| virtual double | logpred (const vec &dt) const | 
| vec | logpred_m (const mat &dt) const | 
| Matrix version of logpred.  | |
| virtual epdf * | predictor (const RV &rv) const | 
| Constructs a predictive density (marginal density on data).  | |
| const RV & | _rv () const | 
| access function  | |
| double | _ll () const | 
| access function  | |
| void | set_evalll (bool evl0) | 
| access function  | |
| virtual BM * | _copy_ (bool changerv=false) | 
| const RV & | _rvc () const | 
| access function  | |
Protected Attributes | |
| diffbifn * | pfxu | 
| Internal Model f(x,u).  | |
| diffbifn * | phxu | 
| Observation Model h(x,u).  | |
| mat | preA | 
| pre array (triangular matrix)  | |
| mat | postA | 
| post array (triangular matrix)  | |
| RV | rvy | 
| Indetifier of output rv.  | |
| RV | rvu | 
| Indetifier of exogeneous rv.  | |
| int | dimx | 
| cache of rv.count()  | |
| int | dimy | 
| cache of rvy.count()  | |
| int | dimu | 
| cache of rvu.count()  | |
| mat | A | 
| Matrix A.  | |
| mat | B | 
| Matrix B.  | |
| mat | C | 
| Matrix C.  | |
| mat | D | 
| Matrix D.  | |
| chmat | Q | 
| Matrix Q in square-root form.  | |
| chmat | R | 
| Matrix R in square-root form.  | |
| enorm< chmat > | est | 
| posterior density on $x_t$  | |
| enorm< chmat > | fy | 
| preditive density on $y_t$  | |
| mat | _K | 
| placeholder for Kalman gain  | |
| vec & | _yp | 
| cache of fy.mu  | |
| chmat & | _Ry | 
| cache of fy.R  | |
| vec & | _mu | 
| cache of est.mu  | |
| chmat & | _P | 
| cache of est.R  | |
| RV | rv | 
| Random variable of the posterior.  | |
| double | ll | 
| Logarithm of marginalized data likelihood.  | |
| bool | evalll | 
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time.  | |
| RV | rvc | 
| Identificator of the conditioning variable.  | |
Q and delta u. | virtual double bdm::BM::logpred | ( | const vec & | dt | ) |  const [inline, virtual, inherited] | 
        
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
Referenced by bdm::BM::logpred_m().
| virtual BM* bdm::BM::_copy_ | ( | bool |  changerv = false           | 
          ) |  [inline, virtual, inherited] | 
        
 1.5.6