#include <libKF.h>
Public Member Functions | |
EKFfull (RV rvx, RV rvy, RV rvu) | |
Default constructor. | |
void | set_parameters (diffbifn *pfxu, diffbifn *phxu, const mat Q0, const mat R0) |
Set nonlinear functions for mean values and covariance matrices. | |
void | bayes (const vec &dt) |
Here dt = [yt;ut] of appropriate dimensions. | |
void | set_est (vec mu0, mat P0) |
set estimates | |
const epdf & | _epdf () const |
dummy! | |
const enorm< fsqmat > * | _e () const |
Returns a pointer to the epdf representing posterior density on parameters. Use with care! | |
const mat | _R () |
virtual void | bayesB (const mat &Dt) |
Batch Bayes rule (columns of Dt are observations). | |
virtual double | logpred (const vec &dt) const |
vec | logpred_m (const mat &dt) const |
Matrix version of logpred. | |
virtual epdf * | predictor (const RV &rv) const |
Constructs a predictive density (marginal density on data). | |
const RV & | _rv () const |
access function | |
double | _ll () const |
access function | |
void | set_evalll (bool evl0) |
access function | |
virtual BM * | _copy_ (bool changerv=false) |
Public Attributes | |
vec | mu |
Mean value of the posterior density. | |
mat | P |
Variance of the posterior density. | |
bool | evalll |
double | ll |
Protected Attributes | |
int | dimx |
int | dimy |
int | dimu |
mat | A |
mat | B |
mat | C |
mat | D |
mat | R |
mat | Q |
mat | _Pp |
mat | _Ry |
mat | _iRy |
mat | _K |
RV | rv |
Random variable of the posterior. | |
double | ll |
Logarithm of marginalized data likelihood. | |
bool | evalll |
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time. | |
Friends | |
std::ostream & | operator<< (std::ostream &os, const KalmanFull &kf) |
print elements of KF |
An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean.
virtual double bdm::BM::logpred | ( | const vec & | dt | ) | const [inline, virtual, inherited] |
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
Referenced by bdm::BM::logpred_m().
virtual BM* bdm::BM::_copy_ | ( | bool | changerv = false |
) | [inline, virtual, inherited] |