bdm::multiBM Class Reference

Estimator for Multinomial density. More...

#include <libEF.h>

Inheritance diagram for bdm::multiBM:

Inheritance graph
[legend]
Collaboration diagram for bdm::multiBM:

Collaboration graph
[legend]

List of all members.

Public Member Functions

 multiBM (const RV &rv, const vec beta0)
 Default constructor.
 multiBM (const multiBM &B)
 Copy constructor.
void set_statistics (const BM *mB0)
 Sets sufficient statistics to match that of givefrom mB0.
void bayes (const vec &dt)
 Incremental Bayes rule.
double logpred (const vec &dt) const
void flatten (const BMEF *B)
 Flatten the posterior according to the given BMEF (of the same type!).
const epdf_epdf () const
 Returns a reference to the epdf representing posterior density on parameters.
const eDirich_e () const
 Returns a pointer to the epdf representing posterior density on parameters. Use with care!
void set_parameters (const vec &beta0)
virtual void set_statistics (const BMEF *BM0)
 get statistics from another model
virtual void bayes (const vec &data, const double w)
 Weighted update of sufficient statistics (Bayes rule).
BMEF_copy_ (bool changerv=false)
 Flatten the posterior as if to keep nu0 data.
virtual void bayesB (const mat &Dt)
 Batch Bayes rule (columns of Dt are observations).
vec logpred_m (const mat &dt) const
 Matrix version of logpred.
virtual epdfpredictor (const RV &rv) const
 Constructs a predictive density (marginal density on data).
const RV_rv () const
 access function
double _ll () const
 access function
void set_evalll (bool evl0)
 access function

Protected Attributes

eDirich est
 Conjugate prior and posterior.
vec & beta
 Pointer inside est to sufficient statistics.
double frg
 forgetting factor
double last_lognc
 cached value of lognc() in the previous step (used in evaluation of ll )
RV rv
 Random variable of the posterior.
double ll
 Logarithm of marginalized data likelihood.
bool evalll
 If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time.


Detailed Description

Estimator for Multinomial density.

Member Function Documentation

void bdm::multiBM::bayes ( const vec &  dt  )  [inline, virtual]

Incremental Bayes rule.

Parameters:
dt vector of input data

Reimplemented from bdm::BMEF.

References beta, est, bdm::BM::evalll, bdm::BMEF::frg, bdm::BMEF::last_lognc, bdm::BM::ll, and bdm::eDirich::lognc().

double bdm::multiBM::logpred ( const vec &  dt  )  const [inline, virtual]

Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.

Reimplemented from bdm::BM.

References bdm::eDirich::_beta(), beta, est, bdm::BM::evalll, bdm::BMEF::frg, bdm::BMEF::last_lognc, and bdm::eDirich::lognc().


The documentation for this class was generated from the following file:

Generated on Tue Jan 27 16:31:37 2009 for mixpp by  doxygen 1.5.6