00001
00013 #ifndef EF_H
00014 #define EF_H
00015
00016 #include <itpp/itbase.h>
00017 #include "../math/libDC.h"
00018 #include "libBM.h"
00019 #include "../itpp_ext.h"
00020
00021
00022 namespace bdm{
00023
00024
00026 extern Uniform_RNG UniRNG;
00028 extern Normal_RNG NorRNG;
00030 extern Gamma_RNG GamRNG;
00031
00038 class eEF : public epdf {
00039 public:
00040
00042 eEF ( const RV &rv ) :epdf ( rv ) {};
00044 virtual double lognc() const =0;
00046 virtual void dupdate ( mat &v ) {it_error ( "Not implemented" );};
00048 virtual double evallog_nn ( const vec &val ) const{it_error ( "Not implemented" );return 0.0;};
00050 virtual double evallog ( const vec &val ) const {double tmp;tmp= evallog_nn ( val )-lognc();it_assert_debug(std::isfinite(tmp),"Infinite value"); return tmp;}
00052 virtual vec evallog ( const mat &Val ) const {
00053 vec x ( Val.cols() );
00054 for ( int i=0;i<Val.cols();i++ ) {x ( i ) =evallog_nn ( Val.get_col ( i ) ) ;}
00055 return x-lognc();
00056 }
00058 virtual void pow ( double p ) {it_error ( "Not implemented" );};
00059 };
00060
00067 class mEF : public mpdf {
00068
00069 public:
00071 mEF ( const RV &rv0, const RV &rvc0 ) :mpdf ( rv0,rvc0 ) {};
00072 };
00073
00075 class BMEF : public BM {
00076 protected:
00078 double frg;
00080 double last_lognc;
00081 public:
00083 BMEF ( const RV &rv, double frg0=1.0 ) :BM ( rv ), frg ( frg0 ) {}
00085 BMEF ( const BMEF &B ) :BM ( B ), frg ( B.frg ), last_lognc ( B.last_lognc ) {}
00087 virtual void set_statistics ( const BMEF* BM0 ) {it_error ( "Not implemented" );};
00089 virtual void bayes ( const vec &data, const double w ) {};
00090
00091 void bayes ( const vec &dt );
00093 virtual void flatten ( const BMEF * B ) {it_error ( "Not implemented" );}
00095
00096
00097 BMEF* _copy_ ( bool changerv=false ) {it_error ( "function _copy_ not implemented for this BM" ); return NULL;};
00098 };
00099
00100 template<class sq_T>
00101 class mlnorm;
00102
00108 template<class sq_T>
00109 class enorm : public eEF {
00110 protected:
00112 vec mu;
00114 sq_T R;
00116 int dim;
00117 public:
00119 enorm ( const RV &rv );
00121 void set_parameters ( const vec &mu,const sq_T &R );
00123
00125 void dupdate ( mat &v,double nu=1.0 );
00126
00127 vec sample() const;
00129 mat sample ( int N ) const;
00130
00131 double evallog_nn ( const vec &val ) const;
00132 double lognc () const;
00133 vec mean() const {return mu;}
00134 vec variance() const {return diag(R.to_mat());}
00135
00136 mpdf* condition ( const RV &rvn ) const ;
00137
00138 epdf* marginal ( const RV &rv ) const;
00139
00141 vec& _mu() {return mu;}
00142
00144 void set_mu ( const vec mu0 ) { mu=mu0;}
00145
00147 sq_T& _R() {return R;}
00148 const sq_T& _R() const {return R;}
00149
00151
00152 };
00153
00160 class egiw : public eEF {
00161 protected:
00163 ldmat V;
00165 double nu;
00167 int xdim;
00169 int nPsi;
00170 public:
00172 egiw ( RV rv, mat V0, double nu0=-1.0 ) : eEF ( rv ), V ( V0 ), nu ( nu0 ) {
00173 xdim = rv.count() /V.rows();
00174 it_assert_debug ( rv.count() ==xdim*V.rows(),"Incompatible V0." );
00175 nPsi = V.rows()-xdim;
00176
00177 if (nu0<0){
00178 nu = 0.1 +nPsi +2*xdim +2;
00179
00180 }
00181 }
00183 egiw ( RV rv, ldmat V0, double nu0=-1.0 ) : eEF ( rv ), V ( V0 ), nu ( nu0 ) {
00184 xdim = rv.count() /V.rows();
00185 it_assert_debug ( rv.count() ==xdim*V.rows(),"Incompatible V0." );
00186 nPsi = V.rows()-xdim;
00187 if (nu0<0){
00188 nu = 0.1 +nPsi +2*xdim +2;
00189
00190 }
00191 }
00192
00193 vec sample() const;
00194 vec mean() const;
00195 vec variance() const{it_error("Not implemented"); return vec(0);};
00196 void mean_mat ( mat &M, mat&R ) const;
00198 double evallog_nn ( const vec &val ) const;
00199 double lognc () const;
00200
00201
00203 ldmat& _V() {return V;}
00205 const ldmat& _V() const {return V;}
00207 double& _nu() {return nu;}
00208 const double& _nu() const {return nu;}
00209 void pow ( double p ) {V*=p;nu*=p;};
00210 };
00211
00220 class eDirich: public eEF {
00221 protected:
00223 vec beta;
00225 double gamma;
00226 public:
00228 eDirich ( const RV &rv, const vec &beta0 ) : eEF ( rv ),beta ( beta0 ) {it_assert_debug ( rv.count() ==beta.length(),"Incompatible statistics" ); };
00230 eDirich ( const eDirich &D0 ) : eEF ( D0.rv ),beta ( D0.beta ) {};
00231 vec sample() const {it_error ( "Not implemented" );return vec_1 ( 0.0 );};
00232 vec mean() const {return beta/gamma;};
00233 vec variance() const {return elem_mult(beta,(beta+1))/ (gamma*(gamma+1));}
00235 double evallog_nn ( const vec &val ) const {double tmp; tmp=( beta-1 ) *log ( val ); it_assert_debug(std::isfinite(tmp),"Infinite value");
00236 return tmp;};
00237 double lognc () const {
00238 double tmp;
00239 double gam=sum ( beta );
00240 double lgb=0.0;
00241 for ( int i=0;i<beta.length();i++ ) {lgb+=lgamma ( beta ( i ) );}
00242 tmp= lgb-lgamma ( gam );
00243 it_assert_debug(std::isfinite(tmp),"Infinite value");
00244 return tmp;
00245 };
00247 vec& _beta() {return beta;}
00249 void set_parameters ( const vec &beta0 ) {
00250 if ( beta0.length() !=beta.length() ) {
00251 it_assert_debug ( rv.length() ==1,"Undefined" );
00252 rv.set_size ( 0,beta0.length() );
00253 }
00254 beta= beta0;
00255 gamma = sum(beta);
00256 }
00257 };
00258
00260 class multiBM : public BMEF {
00261 protected:
00263 eDirich est;
00265 vec β
00266 public:
00268 multiBM ( const RV &rv, const vec beta0 ) : BMEF ( rv ),est ( rv,beta0 ),beta ( est._beta() ) {if(beta.length()>0){last_lognc=est.lognc();}else{last_lognc=0.0;}}
00270 multiBM ( const multiBM &B ) : BMEF ( B ),est ( rv,B.beta ),beta ( est._beta() ) {}
00272 void set_statistics ( const BM* mB0 ) {const multiBM* mB=dynamic_cast<const multiBM*> ( mB0 ); beta=mB->beta;}
00273 void bayes ( const vec &dt ) {
00274 if ( frg<1.0 ) {beta*=frg;last_lognc=est.lognc();}
00275 beta+=dt;
00276 if ( evalll ) {ll=est.lognc()-last_lognc;}
00277 }
00278 double logpred ( const vec &dt ) const {
00279 eDirich pred ( est );
00280 vec &beta = pred._beta();
00281
00282 double lll;
00283 if ( frg<1.0 )
00284 {beta*=frg;lll=pred.lognc();}
00285 else
00286 if ( evalll ) {lll=last_lognc;}
00287 else{lll=pred.lognc();}
00288
00289 beta+=dt;
00290 return pred.lognc()-lll;
00291 }
00292 void flatten ( const BMEF* B ) {
00293 const multiBM* E=dynamic_cast<const multiBM*> ( B );
00294
00295 const vec &Eb=E->beta;
00296 beta*= ( sum ( Eb ) /sum ( beta ) );
00297 if ( evalll ) {last_lognc=est.lognc();}
00298 }
00299 const epdf& _epdf() const {return est;};
00300 const eDirich* _e() const {return &est;};
00301 void set_parameters ( const vec &beta0 ) {
00302 est.set_parameters ( beta0 );
00303 rv = est._rv();
00304 if ( evalll ) {last_lognc=est.lognc();}
00305 }
00306 };
00307
00317 class egamma : public eEF {
00318 protected:
00320 vec alpha;
00322 vec beta;
00323 public :
00325 egamma ( const RV &rv ) :eEF ( rv ), alpha(rv.count()), beta(rv.count()) {};
00327 void set_parameters ( const vec &a, const vec &b ) {alpha=a,beta=b;};
00328 vec sample() const;
00330
00331 double evallog ( const vec &val ) const;
00332 double lognc () const;
00334 void _param ( vec* &a, vec* &b ) {a=αb=β};
00335 vec mean() const {return elem_div(alpha,beta);}
00336 vec variance() const {return elem_div(alpha,elem_mult(beta,beta)); }
00337 };
00338
00353 class eigamma : public eEF {
00354 protected:
00356 vec* alpha;
00358 vec* beta;
00360 egamma eg;
00361 public :
00363 eigamma ( const RV &rv ) :eEF ( rv ), eg(rv) {eg._param(alpha,beta);};
00365 void set_parameters ( const vec &a, const vec &b ) {*alpha=a,*beta=b;};
00366 vec sample() const {return 1.0/eg.sample();};
00368
00369 double evallog ( const vec &val ) const {return eg.evallog(val);};
00370 double lognc () const {return eg.lognc();};
00372 void _param ( vec* &a, vec* &b ) {a=alpha;b=beta;};
00373 vec mean() const {return elem_div(*beta,*alpha-1);}
00374 vec variance() const {vec mea=mean(); return elem_div(elem_mult(mea,mea),*alpha-2);}
00375 };
00376
00378
00379
00380
00381
00382
00383
00385
00386
00387
00388
00389
00390
00391
00393
00394 class euni: public epdf {
00395 protected:
00397 vec low;
00399 vec high;
00401 vec distance;
00403 double nk;
00405 double lnk;
00406 public:
00408 euni ( const RV rv ) :epdf ( rv ) {}
00409 double eval ( const vec &val ) const {return nk;}
00410 double evallog ( const vec &val ) const {return lnk;}
00411 vec sample() const {
00412 vec smp ( rv.count() );
00413 #pragma omp critical
00414 UniRNG.sample_vector ( rv.count(),smp );
00415 return low+elem_mult ( distance,smp );
00416 }
00418 void set_parameters ( const vec &low0, const vec &high0 ) {
00419 distance = high0-low0;
00420 it_assert_debug ( min ( distance ) >0.0,"bad support" );
00421 low = low0;
00422 high = high0;
00423 nk = prod ( 1.0/distance );
00424 lnk = log ( nk );
00425 }
00426 vec mean() const {return (high-low)/2.0;}
00427 vec variance() const {return (pow(high,2)+pow(low,2)+elem_mult(high,low))/3.0;}
00428 };
00429
00430
00436 template<class sq_T>
00437 class mlnorm : public mEF {
00438 protected:
00440 enorm<sq_T> epdf;
00441 mat A;
00442 vec mu_const;
00443 vec& _mu;
00444 public:
00446 mlnorm ( const RV &rv, const RV &rvc );
00448 void set_parameters ( const mat &A, const vec &mu0, const sq_T &R );
00449
00450
00451
00452
00454 void condition ( const vec &cond );
00455
00457 vec& _mu_const() {return mu_const;}
00459 mat& _A() {return A;}
00461 mat _R() {return epdf._R().to_mat();}
00462
00463 template<class sq_M>
00464 friend std::ostream &operator<< ( std::ostream &os, mlnorm<sq_M> &ml );
00465 };
00466
00469 class mlstudent : public mlnorm<ldmat> {
00470 protected:
00471 ldmat Lambda;
00472 ldmat &_R;
00473 ldmat Re;
00474 public:
00475 mlstudent ( const RV &rv0, const RV &rvc0 ) :mlnorm<ldmat> ( rv0,rvc0 ),
00476 Lambda ( rv0.count() ),
00477 _R ( epdf._R() ) {}
00478 void set_parameters ( const mat &A0, const vec &mu0, const ldmat &R0, const ldmat& Lambda0) {
00479 epdf.set_parameters ( zeros ( rv.count() ),Lambda );
00480 A = A0;
00481 mu_const = mu0;
00482 Re=R0;
00483 Lambda = Lambda0;
00484 }
00485 void condition ( const vec &cond ) {
00486 _mu = A*cond + mu_const;
00487 double zeta;
00488
00489 if ((cond.length()+1)==Lambda.rows()){
00490 zeta = Lambda.invqform ( concat(cond, vec_1(1.0)) );
00491 } else {
00492 zeta = Lambda.invqform ( cond );
00493 }
00494 _R = Re;
00495 _R*=( 1+zeta );
00496 };
00497
00498 };
00508 class mgamma : public mEF {
00509 protected:
00511 egamma epdf;
00513 double k;
00515 vec* _beta;
00516
00517 public:
00519 mgamma ( const RV &rv,const RV &rvc ): mEF ( rv,rvc ), epdf ( rv ) {vec* tmp; epdf._param ( tmp,_beta );ep=&epdf;};
00521 void set_parameters ( double k );
00522 void condition ( const vec &val ) {*_beta=k/val;};
00523 };
00524
00534 class migamma : public mEF {
00535 protected:
00537 eigamma epdf;
00539 double k;
00541 vec* _beta;
00543 vec* _alpha;
00544
00545 public:
00547 migamma ( const RV &rv,const RV &rvc ): mEF ( rv,rvc ), epdf ( rv ) {epdf._param ( _alpha,_beta );ep=&epdf;};
00549 void set_parameters ( double k0 ){k=k0;*_alpha=1.0/(k*k)+2;};
00550 void condition ( const vec &val ) {
00551 *_beta=elem_mult(val,(*_alpha-1));
00552 };
00553 };
00554
00566 class mgamma_fix : public mgamma {
00567 protected:
00569 double l;
00571 vec refl;
00572 public:
00574 mgamma_fix ( const RV &rv,const RV &rvc ) : mgamma ( rv,rvc ),refl ( rv.count() ) {};
00576 void set_parameters ( double k0 , vec ref0, double l0 ) {
00577 mgamma::set_parameters ( k0 );
00578 refl=pow ( ref0,1.0-l0 );l=l0;
00579 };
00580
00581 void condition ( const vec &val ) {vec mean=elem_mult ( refl,pow ( val,l ) ); *_beta=k/mean;};
00582 };
00583
00584
00597 class migamma_fix : public migamma {
00598 protected:
00600 double l;
00602 vec refl;
00603 public:
00605 migamma_fix ( const RV &rv,const RV &rvc ) : migamma ( rv,rvc ),refl ( rv.count() ) {};
00607 void set_parameters ( double k0 , vec ref0, double l0 ) {
00608 migamma::set_parameters ( k0 );
00609 refl=pow ( ref0,1.0-l0 );l=l0;
00610 };
00611
00612 void condition ( const vec &val ) {vec mean=elem_mult ( refl,pow ( val,l ) ); migamma::condition(mean);};
00613 };
00615 enum RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
00621 class eEmp: public epdf {
00622 protected :
00624 int n;
00626 vec w;
00628 Array<vec> samples;
00629 public:
00631 eEmp ( const RV &rv0 ,int n0 ) :epdf ( rv0 ),n ( n0 ),w ( n ),samples ( n ) {};
00633 void set_parameters ( const vec &w0, const epdf* pdf0 );
00635 void set_samples ( const epdf* pdf0 );
00637 void set_n ( int n0, bool copy=true ){w.set_size(n0,copy);samples.set_size(n0,copy);};
00639 vec& _w() {return w;};
00641 const vec& _w() const {return w;};
00643 Array<vec>& _samples() {return samples;};
00645 const Array<vec>& _samples() const {return samples;};
00647 ivec resample ( RESAMPLING_METHOD method = SYSTEMATIC );
00649 vec sample() const {it_error ( "Not implemented" );return 0;}
00651 double evallog ( const vec &val ) const {it_error ( "Not implemented" );return 0.0;}
00652 vec mean() const {
00653 vec pom=zeros ( rv.count() );
00654 for ( int i=0;i<n;i++ ) {pom+=samples ( i ) *w ( i );}
00655 return pom;
00656 }
00657 vec variance() const {
00658 vec pom=zeros ( rv.count() );
00659 for ( int i=0;i<n;i++ ) {pom+=pow(samples ( i ),2) *w ( i );}
00660 return pom-pow(mean(),2);
00661 }
00662 };
00663
00664
00666
00667 template<class sq_T>
00668 enorm<sq_T>::enorm ( const RV &rv ) :eEF ( rv ), mu ( rv.count() ),R ( rv.count() ),dim ( rv.count() ) {};
00669
00670 template<class sq_T>
00671 void enorm<sq_T>::set_parameters ( const vec &mu0, const sq_T &R0 ) {
00672
00673 mu = mu0;
00674 R = R0;
00675 };
00676
00677 template<class sq_T>
00678 void enorm<sq_T>::dupdate ( mat &v, double nu ) {
00679
00680 };
00681
00682
00683
00684
00685
00686
00687 template<class sq_T>
00688 vec enorm<sq_T>::sample() const {
00689 vec x ( dim );
00690 #pragma omp critical
00691 NorRNG.sample_vector ( dim,x );
00692 vec smp = R.sqrt_mult ( x );
00693
00694 smp += mu;
00695 return smp;
00696 };
00697
00698 template<class sq_T>
00699 mat enorm<sq_T>::sample ( int N ) const {
00700 mat X ( dim,N );
00701 vec x ( dim );
00702 vec pom;
00703 int i;
00704
00705 for ( i=0;i<N;i++ ) {
00706 #pragma omp critical
00707 NorRNG.sample_vector ( dim,x );
00708 pom = R.sqrt_mult ( x );
00709 pom +=mu;
00710 X.set_col ( i, pom );
00711 }
00712
00713 return X;
00714 };
00715
00716
00717
00718
00719
00720
00721
00722
00723
00724 template<class sq_T>
00725 double enorm<sq_T>::evallog_nn ( const vec &val ) const {
00726
00727 double tmp=-0.5* ( R.invqform ( mu-val ) );
00728 return tmp;
00729 };
00730
00731 template<class sq_T>
00732 inline double enorm<sq_T>::lognc () const {
00733
00734 double tmp=0.5* ( R.cols() * 1.83787706640935 +R.logdet() );
00735 return tmp;
00736 };
00737
00738 template<class sq_T>
00739 mlnorm<sq_T>::mlnorm ( const RV &rv0, const RV &rvc0 ) :mEF ( rv0,rvc0 ),epdf ( rv0 ),A ( rv0.count(),rv0.count() ),_mu ( epdf._mu() ) {
00740 ep =&epdf;
00741 }
00742
00743 template<class sq_T>
00744 void mlnorm<sq_T>::set_parameters ( const mat &A0, const vec &mu0, const sq_T &R0 ) {
00745 epdf.set_parameters ( zeros ( rv.count() ),R0 );
00746 A = A0;
00747 mu_const = mu0;
00748 }
00749
00750
00751
00752
00753
00754
00755
00756
00757
00758
00759
00760
00761
00762
00763
00764
00765
00766
00767
00768
00769
00770
00771
00772
00773
00774
00775 template<class sq_T>
00776 void mlnorm<sq_T>::condition ( const vec &cond ) {
00777 _mu = A*cond + mu_const;
00778
00779 }
00780
00781 template<class sq_T>
00782 epdf* enorm<sq_T>::marginal ( const RV &rvn ) const {
00783 ivec irvn = rvn.dataind ( rv );
00784
00785 sq_T Rn ( R,irvn );
00786 enorm<sq_T>* tmp = new enorm<sq_T> ( rvn );
00787 tmp->set_parameters ( mu ( irvn ), Rn );
00788 return tmp;
00789 }
00790
00791 template<class sq_T>
00792 mpdf* enorm<sq_T>::condition ( const RV &rvn ) const {
00793
00794 RV rvc = rv.subt ( rvn );
00795 it_assert_debug ( ( rvc.count() +rvn.count() ==rv.count() ),"wrong rvn" );
00796
00797 ivec irvn = rvn.dataind ( rv );
00798 ivec irvc = rvc.dataind ( rv );
00799 ivec perm=concat ( irvn , irvc );
00800 sq_T Rn ( R,perm );
00801
00802
00803 mat S=Rn.to_mat();
00804
00805 int n=rvn.count()-1;
00806 int end=R.rows()-1;
00807 mat S11 = S.get ( 0,n, 0, n );
00808 mat S12 = S.get ( 0, n , rvn.count(), end );
00809 mat S22 = S.get ( rvn.count(), end, rvn.count(), end );
00810
00811 vec mu1 = mu ( irvn );
00812 vec mu2 = mu ( irvc );
00813 mat A=S12*inv ( S22 );
00814 sq_T R_n ( S11 - A *S12.T() );
00815
00816 mlnorm<sq_T>* tmp=new mlnorm<sq_T> ( rvn,rvc );
00817
00818 tmp->set_parameters ( A,mu1-A*mu2,R_n );
00819 return tmp;
00820 }
00821
00823
00824 template<class sq_T>
00825 std::ostream &operator<< ( std::ostream &os, mlnorm<sq_T> &ml ) {
00826 os << "A:"<< ml.A<<endl;
00827 os << "mu:"<< ml.mu_const<<endl;
00828 os << "R:" << ml.epdf._R().to_mat() <<endl;
00829 return os;
00830 };
00831
00832 }
00833 #endif //EF_H