#include <libKF.h>
Public Member Functions | |
Kalman (RV rvx0, RV rvy0, RV rvu0) | |
Default constructor. | |
Kalman (const Kalman< sq_T > &K0) | |
Copy constructor. | |
void | set_parameters (const mat &A0, const mat &B0, const mat &C0, const mat &D0, const sq_T &R0, const sq_T &Q0) |
Set parameters with check of relevance. | |
void | set_est (const vec &mu0, const sq_T &P0) |
Set estimate values, used e.g. in initialization. | |
void | bayes (const vec &dt) |
Here dt = [yt;ut] of appropriate dimensions. | |
const epdf & | _epdf () const |
access function | |
const enorm< sq_T > * | _e () const |
Returns a pointer to the epdf representing posterior density on parameters. Use with care! | |
mat & | __K () |
access function | |
vec | _dP () |
access function | |
virtual void | bayesB (const mat &Dt) |
Batch Bayes rule (columns of Dt are observations). | |
virtual double | logpred (const vec &dt) const |
vec | logpred_m (const mat &dt) const |
Matrix version of logpred. | |
virtual epdf * | predictor (const RV &rv) const |
Constructs a predictive density (marginal density on data). | |
const RV & | _rv () const |
access function | |
double | _ll () const |
access function | |
void | set_evalll (bool evl0) |
access function | |
virtual BM * | _copy_ (bool changerv=false) |
Protected Attributes | |
RV | rvy |
Indetifier of output rv. | |
RV | rvu |
Indetifier of exogeneous rv. | |
int | dimx |
cache of rv.count() | |
int | dimy |
cache of rvy.count() | |
int | dimu |
cache of rvu.count() | |
mat | A |
Matrix A. | |
mat | B |
Matrix B. | |
mat | C |
Matrix C. | |
mat | D |
Matrix D. | |
sq_T | Q |
Matrix Q in square-root form. | |
sq_T | R |
Matrix R in square-root form. | |
enorm< sq_T > | est |
posterior density on $x_t$ | |
enorm< sq_T > | fy |
preditive density on $y_t$ | |
mat | _K |
placeholder for Kalman gain | |
vec & | _yp |
cache of fy.mu | |
sq_T & | _Ry |
cache of fy.R | |
vec & | _mu |
cache of est.mu | |
sq_T & | _P |
cache of est.R | |
RV | rv |
Random variable of the posterior. | |
double | ll |
Logarithm of marginalized data likelihood. | |
bool | evalll |
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time. |
Parameter evolution model:
Observation model:
Where $e_t$ and $w_t$ are independent vectors Normal(0,1)-distributed disturbances.
virtual double bdm::BM::logpred | ( | const vec & | dt | ) | const [inline, virtual, inherited] |
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
Referenced by bdm::BM::logpred_m().
virtual BM* bdm::BM::_copy_ | ( | bool | changerv = false |
) | [inline, virtual, inherited] |