#include <libEF.h>
For -variate densities, given rv.count() should be V.rows().
Public Member Functions | |
vec | sample () const |
Returns a sample, from density . | |
vec | mean () const |
return expected value | |
vec | variance () const |
return expected variance (not covariance!) | |
void | mean_mat (mat &M, mat &R) const |
double | evallog_nn (const vec &val) const |
In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise val = [theta_1 theta_2 ... r_1 r_2 ]. | |
double | lognc () const |
logarithm of the normalizing constant, | |
void | pow (double p) |
Power of the density, used e.g. to flatten the density. | |
virtual void | dupdate (mat &v) |
TODO decide if it is really needed. | |
virtual double | evallog (const vec &val) const |
Evaluate normalized log-probability. | |
virtual vec | evallog (const mat &Val) const |
Evaluate normalized log-probability for many samples. | |
Constructors | |
egiw () | |
egiw (int dimx0, ldmat V0, double nu0=-1.0) | |
void | set_parameters (int dimx0, ldmat V0, double nu0=-1.0) |
Access attributes | |
ldmat & | _V () |
const ldmat & | _V () const |
double & | _nu () |
const double & | _nu () const |
Matematical Operations | |
virtual mat | sample_m (int N) const |
Returns N samples, from density . | |
virtual vec | evallog_m (const mat &Val) const |
Compute log-probability of multiple values argument val . | |
virtual mpdf * | condition (const RV &rv) const |
Return conditional density on the given RV, the remaining rvs will be in conditioning. | |
virtual epdf * | marginal (const RV &rv) const |
Return marginal density on the given RV, the remainig rvs are intergrated out. | |
Connection to other classes | |
Description of the random quantity via attribute rv is optional. For operations such as sampling rv does not need to be set. However, for marginalization and conditioning rv has to be set. NB: | |
void | set_rv (const RV &rv0) |
Name its rv. | |
bool | isnamed () const |
True if rv is assigned. | |
const RV & | _rv () const |
Return name (fails when isnamed is false). | |
Access to attributes | |
bool | dimension () const |
Size of the random variable. | |
Protected Attributes | |
ldmat | V |
Extended information matrix of sufficient statistics. | |
double | nu |
Number of data records (degrees of freedom) of sufficient statistics. | |
int | dimx |
Dimension of the output. | |
int | nPsi |
Dimension of the regressor. | |
int | dim |
dimension of the random variable | |
RV | rv |
Description of the random variable. |