00001
00013 #ifndef KF_H
00014 #define KF_H
00015
00016
00017 #include "../stat/libFN.h"
00018 #include "../stat/libEF.h"
00019 #include "../math/chmat.h"
00020
00021 namespace bdm{
00022
00027 class KalmanFull {
00028 protected:
00029 int dimx, dimy, dimu;
00030 mat A, B, C, D, R, Q;
00031
00032
00033 mat _Pp, _Ry, _iRy, _K;
00034 public:
00035
00037 vec mu;
00039 mat P;
00040
00041 bool evalll;
00042 double ll;
00043 public:
00045 KalmanFull ( mat A, mat B, mat C, mat D, mat R, mat Q, mat P0, vec mu0 );
00047 void bayes ( const vec &dt );
00049 friend std::ostream &operator<< ( std::ostream &os, const KalmanFull &kf );
00051 KalmanFull(){};
00052 };
00053
00054
00062 template<class sq_T>
00063
00064 class Kalman : public BM {
00065 protected:
00067 RV rvy;
00069 RV rvu;
00071 int dimx;
00073 int dimy;
00075 int dimu;
00077 mat A;
00079 mat B;
00081 mat C;
00083 mat D;
00085 sq_T Q;
00087 sq_T R;
00088
00090 enorm<sq_T> est;
00092 enorm<sq_T> fy;
00093
00095 mat _K;
00097 vec& _yp;
00099 sq_T& _Ry;
00101 vec& _mu;
00103 sq_T& _P;
00104
00105 public:
00107 Kalman ( );
00109 Kalman ( const Kalman<sq_T> &K0 );
00111 void set_parameters ( const mat &A0,const mat &B0,const mat &C0,const mat &D0,const sq_T &R0,const sq_T &Q0 );
00113 void set_est ( const vec &mu0, const sq_T &P0 ) {
00114 sq_T pom(dimy);
00115 est.set_parameters ( mu0,P0 );
00116 P0.mult_sym(C,pom);
00117 fy.set_parameters ( C*mu0, pom );
00118 };
00119
00121 void bayes ( const vec &dt );
00123 const epdf& _epdf() const {return est;}
00124 const enorm<sq_T>* _e() const {return &est;}
00126 mat& __K() {return _K;}
00128 vec _dP() {return _P->getD();}
00129 };
00130
00133 class KalmanCh : public Kalman<chmat>{
00134 protected:
00136 mat preA;
00138 mat postA;
00139
00140 public:
00142 KalmanCh ():Kalman<chmat>(),preA(),postA(){};
00144 void set_parameters ( const mat &A0,const mat &B0,const mat &C0,const mat &D0,const chmat &R0,const chmat &Q0 );
00145 void set_est ( const vec &mu0, const chmat &P0 ) {
00146 est.set_parameters ( mu0,P0 );
00147 };
00148
00149
00163 void bayes ( const vec &dt );
00164 };
00165
00171 class EKFfull : public KalmanFull, public BM {
00172
00174 diffbifn* pfxu;
00176 diffbifn* phxu;
00177
00178 enorm<fsqmat> E;
00179 public:
00181 EKFfull ( );
00183 void set_parameters ( diffbifn* pfxu, diffbifn* phxu, const mat Q0, const mat R0 );
00185 void bayes ( const vec &dt );
00187 void set_est (vec mu0, mat P0){mu=mu0;P=P0;};
00189 const epdf& _epdf()const{return E;};
00190 const enorm<fsqmat>* _e()const{return &E;};
00191 const mat _R(){return P;}
00192 };
00193
00199 template<class sq_T>
00200 class EKF : public Kalman<fsqmat> {
00202 diffbifn* pfxu;
00204 diffbifn* phxu;
00205 public:
00207 EKF ( RV rvx, RV rvy, RV rvu );
00209 void set_parameters ( diffbifn* pfxu, diffbifn* phxu, const sq_T Q0, const sq_T R0 );
00211 void bayes ( const vec &dt );
00212 };
00213
00220 class EKFCh : public KalmanCh {
00221 protected:
00223 diffbifn* pfxu;
00225 diffbifn* phxu;
00226 public:
00228 EKFCh ();
00230 void set_parameters ( diffbifn* pfxu, diffbifn* phxu, const chmat Q0, const chmat R0 );
00232 void bayes ( const vec &dt );
00233 };
00234
00239 class KFcondQR : public Kalman<ldmat>, public BMcond {
00240
00241 public:
00243 KFcondQR ( ) : Kalman<ldmat> ( ),BMcond ( ) {};
00244
00245 void condition ( const vec &RQ );
00246 };
00247
00252 class KFcondR : public Kalman<ldmat>, public BMcond {
00253
00254 public:
00256 KFcondR ( ) : Kalman<ldmat> ( ),BMcond ( ) {};
00257
00258 void condition ( const vec &R );
00259 };
00260
00262
00263 template<class sq_T>
00264 Kalman<sq_T>::Kalman ( const Kalman<sq_T> &K0 ) : BM ( ),rvy ( K0.rvy ),rvu ( K0.rvu ),
00265 dimx ( K0.dimx ), dimy ( K0.dimy ),dimu ( K0.dimu ),
00266 A ( K0.A ), B ( K0.B ), C ( K0.C ), D ( K0.D ),
00267 Q(K0.Q), R(K0.R),
00268 est ( K0.est ), fy ( K0.fy ), _yp(fy._mu()),_Ry(fy._R()), _mu(est._mu()), _P(est._R()) {
00269
00270
00271
00272
00273
00274
00275
00276 }
00277
00278 template<class sq_T>
00279 Kalman<sq_T>::Kalman ( ) : BM (), est ( ), fy (), _yp(fy._mu()), _Ry(fy._R()), _mu(est._mu()), _P(est._R()) {
00280 };
00281
00282 template<class sq_T>
00283 void Kalman<sq_T>::set_parameters ( const mat &A0,const mat &B0, const mat &C0, const mat &D0, const sq_T &R0, const sq_T &Q0 ) {
00284 it_assert_debug ( A0.cols() ==dimx, "Kalman: A is not square" );
00285 it_assert_debug ( B0.rows() ==dimx, "Kalman: B is not compatible" );
00286 it_assert_debug ( C0.cols() ==dimx, "Kalman: C is not square" );
00287 it_assert_debug ( ( D0.rows() ==dimy ) || ( D0.cols() ==dimu ), "Kalman: D is not compatible" );
00288 it_assert_debug ( ( R0.cols() ==dimy ) || ( R0.rows() ==dimy ), "Kalman: R is not compatible" );
00289 it_assert_debug ( ( Q0.cols() ==dimx ) || ( Q0.rows() ==dimx ), "Kalman: Q is not compatible" );
00290
00291 A = A0;
00292 B = B0;
00293 C = C0;
00294 D = D0;
00295 R = R0;
00296 Q = Q0;
00297 }
00298
00299 template<class sq_T>
00300 void Kalman<sq_T>::bayes ( const vec &dt ) {
00301 it_assert_debug ( dt.length() == ( dimy+dimu ),"KalmanFull::bayes wrong size of dt" );
00302
00303 sq_T iRy(dimy);
00304 vec u = dt.get ( dimy,dimy+dimu-1 );
00305 vec y = dt.get ( 0,dimy-1 );
00306
00307 _mu = A* _mu + B*u;
00308
00309 _P.mult_sym ( A );
00310 _P +=Q;
00311
00312
00313
00314 _P.mult_sym ( C, _Ry );
00315 _Ry +=R;
00316
00317 mat Pfull = _P.to_mat();
00318
00319 _Ry.inv ( iRy );
00320 _K = Pfull*C.transpose() * ( iRy.to_mat() );
00321
00322 sq_T pom ( ( int ) Pfull.rows() );
00323 iRy.mult_sym_t ( C*Pfull,pom );
00324 (_P ) -= pom;
00325 (_yp ) = C* _mu +D*u;
00326 (_mu ) += _K* ( y- _yp );
00327
00328
00329 if ( evalll==true ) {
00330 ll=fy.evallog ( y );
00331 }
00332
00333
00334
00335 };
00336
00337
00338
00339
00340
00341 template<class sq_T>
00342 EKF<sq_T>::EKF ( RV rvx0, RV rvy0, RV rvu0 ) : Kalman<sq_T> ( rvx0,rvy0,rvu0 ) {}
00343
00344 template<class sq_T>
00345 void EKF<sq_T>::set_parameters ( diffbifn* pfxu0, diffbifn* phxu0,const sq_T Q0,const sq_T R0 ) {
00346 pfxu = pfxu0;
00347 phxu = phxu0;
00348
00349
00350 pfxu->dfdx_cond ( _mu,zeros ( dimu ),A,true );
00351
00352 B.clear();
00353 phxu->dfdx_cond ( _mu,zeros ( dimu ),C,true );
00354
00355 D.clear();
00356
00357 R = R0;
00358 Q = Q0;
00359 }
00360
00361 template<class sq_T>
00362 void EKF<sq_T>::bayes ( const vec &dt ) {
00363 it_assert_debug ( dt.length() == ( dimy+dimu ),"KalmanFull::bayes wrong size of dt" );
00364
00365 sq_T iRy(dimy,dimy);
00366 vec u = dt.get ( dimy,dimy+dimu-1 );
00367 vec y = dt.get ( 0,dimy-1 );
00368
00369 _mu = pfxu->eval ( _mu, u );
00370 pfxu->dfdx_cond ( _mu,u,A,false );
00371
00372
00373 _P.mult_sym ( A );
00374 _P +=Q;
00375
00376
00377 phxu->dfdx_cond ( _mu,u,C,false );
00378
00379 _P.mult_sym ( C, _Ry );
00380 ( _Ry ) +=R;
00381
00382 mat Pfull = _P.to_mat();
00383
00384 _Ry.inv ( iRy );
00385 _K = Pfull*C.transpose() * ( iRy.to_mat() );
00386
00387 sq_T pom ( ( int ) Pfull.rows() );
00388 iRy.mult_sym_t ( C*Pfull,pom );
00389 (_P ) -= pom;
00390 _yp = phxu->eval ( _mu,u );
00391 ( _mu ) += _K* ( y-_yp );
00392
00393 if ( evalll==true ) {ll+=fy.evallog ( y );}
00394 };
00395
00396
00397 }
00398 #endif // KF_H
00399
00400