#include <libPF.h>
Posterior density is represented by a weighted empirical density (eEmp
).
Public Member Functions | |
void | set_est (const epdf &epdf0) |
void | bayes (const vec &dt) |
Incremental Bayes rule. | |
vec * | __w () |
access function | |
Constructors | |
PF () | |
PF (mpdf *par0, mpdf *obs0, epdf *epdf0, int n0) | |
void | set_parameters (mpdf *par0, mpdf *obs0, int n0) |
void | set_statistics (const vec w0, epdf *epdf0) |
Constructors | |
virtual BM * | _copy_ () |
Mathematical operations | |
virtual void | bayesB (const mat &Dt) |
Batch Bayes rule (columns of Dt are observations). | |
virtual double | logpred (const vec &dt) const |
vec | logpred_m (const mat &dt) const |
Matrix version of logpred. | |
virtual epdf * | epredictor () const |
Constructs a predictive density . | |
virtual mpdf * | predictor () const |
Constructs a conditional density 1-step ahead predictor. | |
Access to attributes | |
const RV & | _drv () const |
void | set_drv (const RV &rv) |
void | set_rv (const RV &rv) |
double | _ll () const |
void | set_evalll (bool evl0) |
virtual const epdf & | posterior () const =0 |
virtual const epdf * | _e () const =0 |
Protected Attributes | |
int | n |
number of particles; | |
eEmp | est |
posterior density | |
vec & | _w |
pointer into eEmp | |
Array< vec > & | _samples |
pointer into eEmp | |
mpdf * | par |
Parameter evolution model. | |
mpdf * | obs |
Observation model. | |
RV | drv |
Random variable of the data (optional). | |
double | ll |
Logarithm of marginalized data likelihood. | |
bool | evalll |
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time. |
void bdm::PF::set_est | ( | const epdf & | epdf0 | ) |
Set posterior density by sampling from epdf0
Reimplemented in bdm::MPF< BM_T >.
References _samples, n, and bdm::epdf::sample().
Referenced by bdm::MPF< BM_T >::set_est().
void bdm::PF::bayes | ( | const vec & | dt | ) | [virtual] |
Incremental Bayes rule.
dt | vector of input data |
Implements bdm::BM.
Reimplemented in bdm::MPF< BM_T >.
References bdm::mpdf::_e(), _samples, _w, est, bdm::epdf::evallog(), bdm::mpdf::evallogcond(), n, obs, par, bdm::eEmp::resample(), and bdm::mpdf::samplecond().
virtual BM* bdm::BM::_copy_ | ( | ) | [inline, virtual, inherited] |
virtual double bdm::BM::logpred | ( | const vec & | dt | ) | const [inline, virtual, inherited] |
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
Referenced by bdm::BM::logpred_m().