\form#0:$A=\frac{df}{dx}|_{x0,u0}$ \form#1:$A=\frac{d}{dx}f(x,u)|_{x0,u0}$ \form#2:$A=\frac{d}{du}f(x,u)|_{x0,u0}$ \form#3:$x \sim epdf(rv)$ \form#4:\[ f(x|a,b) = \prod f(x_i|a_i,b_i) \] \form#5:\[M = L'DL\] \form#6:\[ x_t = A x_{t-1} + B u_t + Q^{1/2} e_t \] \form#7:\[ y_t = C x_{t-1} + C u_t + Q^{1/2} w_t. \] \form#8:\[ f(x|\alpha,\beta) = \prod f(x_i|\alpha_i,\beta_i) \] \form#9:$x^{(i)}, i=1..n$ \form#10:$x \sim epdf(rv|cond)$ \form#11:$\alpha=k$ \form#12:$\beta=k/\mu$ \form#13:$\mu/\sqrt(k)$ \form#14:$\mu$ \form#15:$\alpha$ \form#16:$\beta$ \form#17:\[ \left[\begin{array}{cc} R^{0.5}\\ P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} R_{y}^{0.5} & KA'\\ & P_{t+1|t}^{0.5}\\ \\\end{array}\right]\] \form#18:\[ \mu = \mu_{t-1} ^{l} p^{1-l}\] \form#19:$A=Ch' Ch$ \form#20:$Ch$ \form#21:$L$ \form#22:$D$ \form#23:$V = V + w v v'$ \form#24:$C$ \form#25:$V = C*V*C'$ \form#26:$V = C'*V*C$ \form#27:$V$ \form#28:$x$ \form#29:$x= v'*V*v$ \form#30:$x= v'*inv(V)*v$ \form#31:$U$ \form#32:$A'D0 A$ \form#33:$L'DL$ \form#34:$A'*diag(D)*A = self.L'*diag(self.D)*self.L$ \form#35:$f(x)$ \form#36:$f(rv|rvc,data)$ \form#37:$x=$ \form#38:$t$ \form#39:$t+1$ \form#40:$mu=A*rvc$ \form#41:$k$ \form#42:$p$ \form#43:$l$ \form#44:$w$ \form#45:$f(x) = a$ \form#46:$f(x) = Ax+B$ \form#47:$f(x,u)$ \form#48:$f(x,u) = Ax+Bu$ \form#49:$f(x0,u0)$ \form#50:$u$ \form#51:$[\theta r]$ \form#52:$\psi=\psi(y_{1:t},u_{1:t})$ \form#53:$u_t$ \form#54:$e_t$ \form#55:$\theta_t,r_t$ \form#56:$\in <0,1>$ \form#57:$\theta,r$ \form#58:$dt = [y_t psi_t] $ \form#59:$epdf(rv)$ \form#60:$\mathcal{I}$ \form#61:\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] \form#62:\[ e_t \sim \mathcal{N}(0,1). \] \form#63:\[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \] \form#64:$f_i(x)$ \form#65:$\omega$ \form#66:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \] \form#67:$\psi$ \form#68:$w=[w_1,\ldots,w_n]$ \form#69:$\theta_i$ \form#70:$\Theta$ \form#71:$\Theta = [\theta_1,\ldots,\theta_n,w]$ \form#72:$p\times$ \form#73:$n$ \form#74:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^(\beta_i-1) \] \form#75:$\gamma=\sum_i beta_i$ \form#76:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] \form#77:$\gamma=\sum_i \beta_i$ \form#78:$mu=A*rvc+mu_0$ \form#79:\[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] \form#80:$ f(rvc) = \int f(rv,rvc) d\ rv $ \form#81:\[ f(\theta|D) =\frac{f(D|\theta)f(\theta)}{f(D)}\] \form#82:$ \theta $ \form#83:$ D $ \form#84:$ f(D|\theta) $ \form#85:$ f(\theta) $ \form#86:$ f(D) $ \form#87:$\alpha=\mu/k+2$ \form#88:$\beta=\mu(\alpha-1)$ \form#89:\[ f(a,b,c) = f(a|b,c) f(b) f(c) \] \form#90:$ f(a|b,c) $ \form#91:$ f(b) $ \form#92:$ f(c) $ \form#93:\[ x\sim iG(a,b) => 1/x\sim G(a,1/b) \] \form#94:$y_t$ \form#95:$[\theta,\rho]$ \form#96:$\phi_t$ \form#97:$\mathcal{N}(0,1)$ \form#98:$\phi$ \form#99:\[ y_t = \theta' \phi_t + \rho e_t \] \form#100:$[u_t, y_{t-1 }, u_{t-1}, \ldots]$ \form#101:\[ y_t = \theta' \psi_t + \rho e_t \] \form#102:$\psi_t$ \form#103:$[y_t, u_t, y_{t-1 }, u_{t-1}, \ldots]$ \form#104:$ f(x_t|x_{t-1}) $ \form#105:$ f(d_t|x_t) $ \form#106:$ x $ \form#107:$ f_x()$ \form#108:$ [x_1 , x_2 , \ldots \ $ \form#109:$ f_x(rv)$ \form#110:$ t $ \form#111:$ t+1 $ \form#112:$ f(d_{t+1} |d_{t}, \ldots d_{0}) $ \form#113:$ \mu $ \form#114:$ k $ \form#115:$ \alpha=\mu/k^2+2 $ \form#116:$ \beta=\mu(\alpha-1)$ \form#117:$ \mu/\sqrt(k)$ \form#118:$ y_t $ \form#119:$ dt = [y_t psi_t] $ \form#120:$ [d_1, d_2, \ldots d_t] $ \form#121:\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray} \form#122:$ x_t $ \form#123:$ A, B, C, D$ \form#124:$v_t, w_t$ \form#125:$Q, R\$, respectively. Both prior and posterior densities on the state are Gaussian, i.e. of the class enorm. There is a range of classes that implements this functionality, namely: - KalmanFull which implements the estimation algorithm on full matrices, - KalmanCh which implements the estimation algorithm using choleski decompositions and QR algorithm. \section ekf Extended Kalman Filtering Extended Kalman filtering arise by linearization of non-linear state space model: \f{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \f} where $ \form#126:$Q, R$ \form#127:\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray} \form#128:$ g(), h() $ \form#129:\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \] \form#130:\[ \nu_t = \sum_{i=0}^{n} 1 \] \form#131:$ \theta_t , r_t $ \form#132:\[ V_t = V_{t-1} + \phi \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \] \form#133:\[ \nu_t = \nu_{t-1} + \phi + (1-\phi) \nu_0 \] \form#134:$ \phi $ \form#135:$ \phi \in [0,1]$ \form#136:\[ \mathrm{win_length} = \frac{1}{1-\phi}\] \form#137:$ \phi=0.9 $ \form#138:$ V_0 , \nu_0 $ \form#139:$ V_t , \nu_t $ \form#140:$ \phi<1 $