Kalman< sq_T > Class Template Reference

Kalman filter with covariance matrices in square root form. More...

#include <libKF.h>

Inheritance diagram for Kalman< sq_T >:

Inheritance graph
[legend]
Collaboration diagram for Kalman< sq_T >:

Collaboration graph
[legend]

List of all members.

Public Member Functions

 Kalman (int dimx, int dimu, int dimy)
 Default constructor.
 Kalman (mat A0, mat B0, mat C0, mat D0, sq_T R0, sq_T Q0, sq_T P0, vec mu0)
 Full constructor.
void bayes (const vec &dt, bool evalll=true)
 Here dt = [yt;ut] of appropriate dimensions.
virtual void bayes (const vec &dt)=0
 Incremental Bayes rule.
void bayes (mat Dt)
 Batch Bayes rule (columns of Dt are observations).
epdf_epdf ()
 Returns a pointer to the epdf representing posterior density on parameters. Use with care!

Public Attributes

vec mu
 Mean value of the posterior density.
sq_T P
 Mean value of the posterior density.
double ll
 Logarithm of marginalized data likelihood.
bool evalll
 If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save time.

Protected Attributes

int dimx
int dimy
int dimu
mat A
mat B
mat C
mat D
sq_T R
sq_T Q
mat _K
vec _yp
sq_T _Ry
sq_T _iRy

Friends

std::ostream & operator<< (std::ostream &os, const KalmanFull &kf)


Detailed Description

template<class sq_T>
class Kalman< sq_T >

Kalman filter with covariance matrices in square root form.

Member Function Documentation

virtual void BM::bayes ( const vec &  dt  )  [pure virtual, inherited]

Incremental Bayes rule.

Parameters:
dt vector of input data


The documentation for this class was generated from the following file:
Generated on Mon Feb 18 21:48:44 2008 for mixpp by  doxygen 1.5.3