#include <libKF.h>
Trivial example:
#include <estim/libKF.h> using namespace bdm; // estimation of AR(0) model int main() { //dimensions int dx=3, dy=3, du=1; // matrices mat A = eye(dx); mat B = zeros(dx,du); mat C = eye(dx); mat D = zeros(dy,du); mat Q = eye(dx); mat R = 0.1*eye(dy); //prior mat P0 = 100*eye(dx); vec mu0 = zeros(dx); // Estimator KalmanCh KF; KF.set_parameters(A,B,C,D,/*covariances*/ Q,R); KF.set_statistics(mu0,P0); // Estimation loop for (int i=0;i<100;i++){ KF.bayes(randn(dx+du)); } //print results cout << "Posterior estimate of x is: " << endl; cout << "mean: "<< KF.posterior().mean()<< endl; cout << "variance: "<< KF.posterior().variance()<< endl; }
Public Member Functions | |
KalmanCh () | |
Default constructor. | |
void | set_parameters (const mat &A0, const mat &B0, const mat &C0, const mat &D0, const chmat &Q0, const chmat &R0) |
Set parameters with check of relevance. | |
void | set_statistics (const vec &mu0, const chmat &P0) |
void | bayes (const vec &dt) |
Here dt = [yt;ut] of appropriate dimensions. | |
void | set_est (const vec &mu0, const chmat &P0) |
Set estimate values, used e.g. in initialization. | |
const epdf & | posterior () const |
access function | |
const enorm< chmat > * | _e () const |
mat & | __K () |
access function | |
vec | _dP () |
access function | |
Constructors | |
virtual BM * | _copy_ () |
Mathematical operations | |
virtual void | bayesB (const mat &Dt) |
Batch Bayes rule (columns of Dt are observations). | |
virtual double | logpred (const vec &dt) const |
vec | logpred_m (const mat &dt) const |
Matrix version of logpred. | |
virtual epdf * | epredictor () const |
Constructs a predictive density . | |
virtual mpdf * | predictor () const |
Constructs a conditional density 1-step ahead predictor. | |
Access to attributes | |
const RV & | _drv () const |
void | set_drv (const RV &rv) |
void | set_rv (const RV &rv) |
double | _ll () const |
void | set_evalll (bool evl0) |
Protected Attributes | |
mat | preA |
pre array (triangular matrix) | |
mat | postA |
post array (triangular matrix) | |
RV | rvy |
Indetifier of output rv. | |
RV | rvu |
Indetifier of exogeneous rv. | |
int | dimx |
cache of rv.count() | |
int | dimy |
cache of rvy.count() | |
int | dimu |
cache of rvu.count() | |
mat | A |
Matrix A. | |
mat | B |
Matrix B. | |
mat | C |
Matrix C. | |
mat | D |
Matrix D. | |
chmat | Q |
Matrix Q in square-root form. | |
chmat | R |
Matrix R in square-root form. | |
enorm< chmat > | est |
posterior density on $x_t$ | |
enorm< chmat > | fy |
preditive density on $y_t$ | |
mat | _K |
placeholder for Kalman gain | |
vec & | _yp |
cache of fy.mu | |
chmat & | _Ry |
cache of fy.R | |
vec & | _mu |
cache of est.mu | |
chmat & | _P |
cache of est.R | |
RV | drv |
Random variable of the data (optional). | |
double | ll |
Logarithm of marginalized data likelihood. | |
bool | evalll |
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time. |
void bdm::KalmanCh::bayes | ( | const vec & | dt | ) | [virtual] |
Here dt = [yt;ut] of appropriate dimensions.
The following equality hold::
Thus this object evaluates only predictors! Not filtering densities.
Reimplemented from bdm::Kalman< chmat >.
Reimplemented in bdm::EKFCh.
References chmat::_Ch(), bdm::Kalman< chmat >::_K, bdm::Kalman< chmat >::_mu, bdm::Kalman< chmat >::_P, bdm::Kalman< chmat >::_Ry, bdm::Kalman< chmat >::_yp, bdm::Kalman< chmat >::A, bdm::Kalman< chmat >::B, bdm::Kalman< chmat >::C, bdm::Kalman< chmat >::D, bdm::Kalman< chmat >::dimu, bdm::Kalman< chmat >::dimx, bdm::Kalman< chmat >::dimy, bdm::BM::evalll, bdm::eEF::evallog(), bdm::Kalman< chmat >::fy, bdm::BM::ll, postA, and preA.
virtual BM* bdm::BM::_copy_ | ( | ) | [inline, virtual, inherited] |
virtual double bdm::BM::logpred | ( | const vec & | dt | ) | const [inline, virtual, inherited] |
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
Referenced by bdm::BM::logpred_m().