#include <libEF.h>
Extension to conditional BM | |
This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed | |
const RV & | _rvc () const |
access function | |
virtual void | condition (const vec &val) |
Substitute val for rvc . | |
RV | rvc |
Name of extension variable. | |
Logging of results | |
void | set_options (const string &opt) |
Set boolean options from a string. | |
void | log_add (logger *L, const string &name="") |
Add all logged variables to a logger. | |
void | logit (logger *L) |
ivec | LIDs |
IDs of storages in loggers. | |
bool | opt_L_bounds |
Option for logging bounds. | |
Public Member Functions | |
multiBM () | |
Default constructor. | |
multiBM (const multiBM &B) | |
Copy constructor. | |
void | set_statistics (const BM *mB0) |
Sets sufficient statistics to match that of givefrom mB0. | |
void | bayes (const vec &dt) |
Incremental Bayes rule. | |
double | logpred (const vec &dt) const |
void | flatten (const BMEF *B) |
Flatten the posterior according to the given BMEF (of the same type!). | |
const epdf & | posterior () const |
const eDirich * | _e () const |
void | set_parameters (const vec &beta0) |
virtual void | set_statistics (const BMEF *BM0) |
get statistics from another model | |
virtual void | bayes (const vec &data, const double w) |
Weighted update of sufficient statistics (Bayes rule). | |
BMEF * | _copy_ (bool changerv=false) const |
Flatten the posterior as if to keep nu0 data. | |
Constructors | |
virtual BM * | _copy_ () const |
Mathematical operations | |
virtual void | bayesB (const mat &Dt) |
Batch Bayes rule (columns of Dt are observations). | |
vec | logpred_m (const mat &dt) const |
Matrix version of logpred. | |
virtual epdf * | epredictor () const |
Constructs a predictive density . | |
virtual mpdf * | predictor () const |
Constructs a conditional density 1-step ahead predictor. | |
Access to attributes | |
const RV & | _drv () const |
void | set_drv (const RV &rv) |
void | set_rv (const RV &rv) |
double | _ll () const |
void | set_evalll (bool evl0) |
Protected Attributes | |
eDirich | est |
Conjugate prior and posterior. | |
vec & | beta |
Pointer inside est to sufficient statistics. | |
double | frg |
forgetting factor | |
double | last_lognc |
cached value of lognc() in the previous step (used in evaluation of ll ) | |
RV | drv |
Random variable of the data (optional). | |
double | ll |
Logarithm of marginalized data likelihood. | |
bool | evalll |
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time. |
void bdm::multiBM::bayes | ( | const vec & | dt | ) | [inline, virtual] |
Incremental Bayes rule.
dt | vector of input data |
Reimplemented from bdm::BMEF.
References beta, est, bdm::BM::evalll, bdm::BMEF::frg, bdm::BMEF::last_lognc, bdm::BM::ll, and bdm::eDirich::lognc().
double bdm::multiBM::logpred | ( | const vec & | dt | ) | const [inline, virtual] |
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented from bdm::BM.
References bdm::eDirich::_beta(), beta, est, bdm::BM::evalll, bdm::BMEF::frg, bdm::BMEF::last_lognc, and bdm::eDirich::lognc().
virtual BM* bdm::BM::_copy_ | ( | ) | const [inline, virtual, inherited] |
Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:
BM* _copy_() const {return new BM(*this);}
Reimplemented in bdm::ARX, bdm::KalmanCh, bdm::EKF< sq_T >, and bdm::EKFCh.