\form#0:\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] \form#1:$[\theta r]$ \form#2:$\psi=\psi(y_{1:t},u_{1:t})$ \form#3:$u_t$ \form#4:$e_t$ \form#5:\[ e_t \sim \mathcal{N}(0,1). \] \form#6:$ y_t $ \form#7:$\theta,r$ \form#8:$ dt = [y_t psi_t] $ \form#9:\[ x_t = A x_{t-1} + B u_t + Q^{1/2} e_t \] \form#10:\[ y_t = C x_{t-1} + C u_t + Q^{1/2} w_t. \] \form#11:\[ \left[\begin{array}{cc} R^{0.5}\\ P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} R_{y}^{0.5} & KA'\\ & P_{t+1|t}^{0.5}\\ \\\end{array}\right]\] \form#12:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \] \form#13:$\psi$ \form#14:$w=[w_1,\ldots,w_n]$ \form#15:$\theta_i$ \form#16:$\Theta$ \form#17:$\Theta = [\theta_1,\ldots,\theta_n,w]$ \form#18:$A=Ch' Ch$ \form#19:$Ch$ \form#20:\[M = L'DL\] \form#21:$L$ \form#22:$D$ \form#23:$V = V + w v v'$ \form#24:$C$ \form#25:$V = C*V*C'$ \form#26:$V = C'*V*C$ \form#27:$V$ \form#28:$x$ \form#29:$x= v'*V*v$ \form#30:$x= v'*inv(V)*v$ \form#31:$U$ \form#32:$A'D0 A$ \form#33:$L'DL$ \form#34:$A'*diag(D)*A = self.L'*diag(self.D)*self.L$ \form#35:\[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] \form#36:$ f(rvc) = \int f(rv,rvc) d\ rv $ \form#37:\[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \] \form#38:$f_i(x)$ \form#39:$f(x)$ \form#40:$f(rv|rvc,data)$ \form#41:$x=$ \form#42:$ x $ \form#43:$ f_x()$ \form#44:$ [x_1 , x_2 , \ldots \ $ \form#45:$ f_x(rv)$ \form#46:$x \sim epdf(rv|cond)$ \form#47:$ t $ \form#48:$ t+1 $ \form#49:$ f(d_{t+1} |d_{t}, \ldots d_{0}) $ \form#50:$t$ \form#51:$[y_t, u_t, y_{t-1 }, u_{t-1}, \ldots]$ \form#52:$ f(x_t|x_{t-1}) $ \form#53:$ f(d_t|x_t) $ \form#54:$p$ \form#55:$p\times$ \form#56:$n$ \form#57:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] \form#58:$\gamma=\sum_i \beta_i$ \form#59:\[ f(x|\alpha,\beta) = \prod f(x_i|\alpha_i,\beta_i) \] \form#60:\[ x\sim iG(a,b) => 1/x\sim G(a,1/b) \] \form#61:$mu=A*rvc+mu_0$ \form#62:$\mu$ \form#63:$k$ \form#64:$\alpha=k$ \form#65:$\beta=k/\mu$ \form#66:$\mu/\sqrt(k)$ \form#67:$ \mu $ \form#68:$ k $ \form#69:$ \alpha=\mu/k^2+2 $ \form#70:$ \beta=\mu(\alpha-1)$ \form#71:$ \mu/\sqrt(k)$ \form#72:$l$ \form#73:\[ \mu = \mu_{t-1} ^{l} p^{1-l}\] \form#74:$\mathcal{I}$ \form#75:$\alpha$ \form#76:$\beta$ \form#77:$w$ \form#78:$x^{(i)}, i=1..n$ \form#79:$f(x) = a$ \form#80:$f(x) = Ax+B$ \form#81:$f(x,u)$ \form#82:$f(x,u) = Ax+Bu$ \form#83:$f(x0,u0)$ \form#84:$A=\frac{d}{dx}f(x,u)|_{x0,u0}$ \form#85:$u$ \form#86:$A=\frac{d}{du}f(x,u)|_{x0,u0}$ \form#87:$ f(D) $ \form#88:\[ f(a,b,c) = f(a|b,c) f(b) f(c) \] \form#89:$ f(a|b,c) $ \form#90:$ f(b) $ \form#91:$ f(c) $ \form#92:\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray} \form#93:$ x_t $ \form#94:$ A, B, C, D$ \form#95:$v_t, w_t$ \form#96:$Q, R$ \form#97:\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray} \form#98:$ g(), h() $ \form#99:\[ y_t = \theta' \psi_t + \rho e_t \] \form#100:$y_t$ \form#101:$[\theta,\rho]$ \form#102:$\psi_t$ \form#103:$\mathcal{N}(0,1)$ \form#104:\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \] \form#105:\[ \nu_t = \sum_{i=0}^{n} 1 \] \form#106:$ \theta_t , r_t $ \form#107:\[ V_t = V_{t-1} + \phi \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \] \form#108:\[ \nu_t = \nu_{t-1} + \phi + (1-\phi) \nu_0 \] \form#109:$ \phi $ \form#110:$ \phi \in [0,1]$ \form#111:\[ \mathrm{win_length} = \frac{1}{1-\phi}\] \form#112:$ \phi=0.9 $ \form#113:$ V_0 , \nu_0 $ \form#114:$ V_t , \nu_t $ \form#115:$ \phi<1 $ \form#116:$ [d_1, d_2, \ldots d_t] $ \form#117:$\omega$ \form#118:\[ f(\theta_t | d_1,\ldots,d_t) = \frac{f(y_t|\theta_t,\cdot) f(\theta_t|d_1,\ldots,d_{t-1})}{f(y_t|d_1,\ldots,d_{t-1})} \] \form#119:$ c_t $ \form#120:\[ f(\theta_t | c_t, d_1,\ldots,d_t) \propto f(y_t,\theta_t|c_t,\cdot, d_1,\ldots,d_{t-1}) \]