#include <libBM.h>

This object represents exact or approximate evaluation of the Bayes rule:
![\[ f(\theta_t | d_1,\ldots,d_t) = \frac{f(y_t|\theta_t,\cdot) f(\theta_t|d_1,\ldots,d_{t-1})}{f(y_t|d_1,\ldots,d_{t-1})} \]](form_118.png) 
Access to the resulting posterior density is via function posterior().
As a "side-effect" it also evaluates log-likelihood of the data, which can be accessed via function _ll(). It can also evaluate predictors of future values of  , see functions epredictor() and predictor().
, see functions epredictor() and predictor().
Alternatively, it can evaluate posterior density conditioned by a known constant,  :
: 
![\[ f(\theta_t | c_t, d_1,\ldots,d_t) \propto f(y_t,\theta_t|c_t,\cdot, d_1,\ldots,d_{t-1}) \]](form_120.png) 
The value of  is set by function condition().
 is set by function condition(). 
| Extension to conditional BM | |
| This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed | |
| RV | rvc | 
| Name of extension variable. | |
| const RV & | _rvc () const | 
| access function | |
| virtual void | condition (const vec &val) | 
| Substitute valforrvc. | |
| Logging of results | |
| ivec | LIDs | 
| IDs of storages in loggers. | |
| bool | opt_L_bounds | 
| Option for logging bounds. | |
| void | set_options (const string &opt) | 
| Set boolean options from a string. | |
| void | log_add (logger *L, const string &name="") | 
| Add all logged variables to a logger. | |
| void | logit (logger *L) | 
| Public Member Functions | |
| Constructors | |
| BM () | |
| BM (const BM &B) | |
| virtual BM * | _copy_ () const | 
| Mathematical operations | |
| virtual void | bayes (const vec &dt)=0 | 
| Incremental Bayes rule. | |
| virtual void | bayesB (const mat &Dt) | 
| Batch Bayes rule (columns of Dt are observations). | |
| virtual double | logpred (const vec &dt) const | 
| vec | logpred_m (const mat &dt) const | 
| Matrix version of logpred. | |
| virtual epdf * | epredictor () const | 
| Constructs a predictive density  . | |
| virtual mpdf * | predictor () const | 
| Constructs a conditional density 1-step ahead predictor. | |
| Access to attributes | |
| const RV & | _drv () const | 
| void | set_drv (const RV &rv) | 
| void | set_rv (const RV &rv) | 
| double | _ll () const | 
| void | set_evalll (bool evl0) | 
| virtual const epdf & | posterior () const =0 | 
| virtual const epdf * | _e () const =0 | 
| Protected Attributes | |
| RV | drv | 
| Random variable of the data (optional). | |
| double | ll | 
| Logarithm of marginalized data likelihood. | |
| bool | evalll | 
| If true, the filter will compute likelihood of the data record and store it in ll. Set to false if you want to save computational time. | |
| virtual BM* bdm::BM::_copy_ | ( | ) | const  [inline, virtual] | 
Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:
BM* _copy_() const {return new BM(*this);}
Reimplemented in bdm::ARX, bdm::KalmanCh, bdm::EKF< sq_T >, and bdm::EKFCh.
| virtual void bdm::BM::bayes | ( | const vec & | dt | ) |  [pure virtual] | 
Incremental Bayes rule.
| dt | vector of input data | 
Implemented in bdm::ARX, bdm::Kalman< sq_T >, bdm::KalmanCh, bdm::EKFfull, bdm::EKF< sq_T >, bdm::EKFCh, bdm::PF, bdm::MPF< BM_T >, bdm::MixEF, bdm::BMEF, bdm::multiBM, EKFfixed, bdm::Kalman< ldmat >, bdm::Kalman< chmat >, and bdm::Kalman< fsqmat >.
Referenced by bayesB().
| virtual double bdm::BM::logpred | ( | const vec & | dt | ) | const  [inline, virtual] | 
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
Referenced by logpred_m().
 1.5.6
 1.5.6