#include <libPF.h>

Trivial version: proposal = parameter evolution, observation model is not used. (it is assumed to be part of BM).
| Extension to conditional BM | |
| This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed | |
| const RV & | _rvc () const | 
| access function | |
| virtual void | condition (const vec &val) | 
| Substitute valforrvc. | |
| RV | rvc | 
| Name of extension variable. | |
| Logging of results | |
| void | log_add (logger *L, const string &name="") | 
| Add all logged variables to a logger. | |
| void | logit (logger *L) | 
| ivec | LIDs | 
| IDs of storages in loggers. | |
| bool | opt_L_bounds | 
| Option for logging bounds. | |
| Public Member Functions | |
| MPF () | |
| Default constructor. | |
| void | set_parameters (mpdf *par0, mpdf *obs0, int n0, RESAMPLING_METHOD rm=SYSTEMATIC) | 
| void | set_statistics (epdf *epdf0, const BM_T *BMcond0) | 
| void | bayes (const vec &dt) | 
| Incremental Bayes rule. | |
| const epdf & | posterior () const | 
| const epdf * | _e () const | 
| void | set_options (const string &opt) | 
| Set postrior of rvcto samples from epdf0. Statistics of BMs are not re-computed! Use only for initialization! | |
| BM * | _BM (int i) | 
| Access function. | |
| vec * | __w () | 
| access function | |
| Constructors | |
| void | set_statistics (const vec w0, epdf *epdf0) | 
| Constructors | |
| virtual BM * | _copy_ () const | 
| Mathematical operations | |
| virtual void | bayesB (const mat &Dt) | 
| Batch Bayes rule (columns of Dt are observations). | |
| virtual double | logpred (const vec &dt) const | 
| vec | logpred_m (const mat &dt) const | 
| Matrix version of logpred. | |
| virtual epdf * | epredictor () const | 
| Constructs a predictive density  . | |
| virtual mpdf * | predictor () const | 
| Constructs a conditional density 1-step ahead predictor. | |
| Access to attributes | |
| const RV & | _drv () const | 
| void | set_drv (const RV &rv) | 
| void | set_rv (const RV &rv) | 
| double | _ll () const | 
| void | set_evalll (bool evl0) | 
| Protected Attributes | |
| int | n | 
| number of particles; | |
| eEmp | est | 
| posterior density | |
| vec & | _w | 
| pointer into eEmp | |
| Array< vec > & | _samples | 
| pointer into eEmp | |
| mpdf * | par | 
| Parameter evolution model. | |
| mpdf * | obs | 
| Observation model. | |
| RESAMPLING_METHOD | resmethod | 
| which resampling method will be used | |
| RV | drv | 
| Random variable of the data (optional). | |
| double | ll | 
| Logarithm of marginalized data likelihood. | |
| bool | evalll | 
| If true, the filter will compute likelihood of the data record and store it in ll. Set to false if you want to save computational time. | |
| Options | |
| bool | opt_L_smp | 
| Log all samples. | |
| bool | opt_L_wei | 
| Log all samples. | |
| Classes | |
| class | mpfepdf | 
| internal class for MPDF providing composition of eEmp with external components | |
| void bdm::MPF< BM_T >::bayes | ( | const vec & | dt | ) |  [inline, virtual] | 
Incremental Bayes rule.
| dt | vector of input data | 
Reimplemented from bdm::PF.
References bdm::mpdf::_e(), bdm::PF::_samples, bdm::PF::_w, bdm::PF::est, bdm::epdf::evallog(), bdm::PF::par, bdm::eEmp::resample(), bdm::PF::resmethod, and bdm::mpdf::samplecond().
| virtual BM* bdm::BM::_copy_ | ( | ) | const  [inline, virtual, inherited] | 
Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:
BM* _copy_() const {return new BM(*this);}
Reimplemented in bdm::ARX, bdm::KalmanCh, bdm::EKF< sq_T >, and bdm::EKFCh.
| virtual double bdm::BM::logpred | ( | const vec & | dt | ) | const  [inline, virtual, inherited] | 
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
Referenced by bdm::BM::logpred_m().
 1.5.6
 1.5.6