EKF< sq_T > Class Template Reference

Extended Kalman Filter. More...

#include <libKF.h>

Inheritance diagram for EKF< sq_T >:

Inheritance graph
[legend]
Collaboration diagram for EKF< sq_T >:

Collaboration graph
[legend]

List of all members.

Public Member Functions

 EKF (diffbifn *pfxu, diffbifn *phxu, sq_T Q0, sq_T R0, vec mu0, mat P0)
 Default constructor.
void bayes (const vec &dt, bool evalll=true)
 Here dt = [yt;ut] of appropriate dimensions.
virtual void bayes (const vec &dt)=0
 Incremental Bayes rule.
void bayes (mat Dt)
 Batch Bayes rule (columns of Dt are observations).
epdf_epdf ()
 Returns a pointer to the epdf representing posterior density on parameters. Use with care!

Public Attributes

vec mu
 Mean value of the posterior density.
fsqmat P
 Mean value of the posterior density.
double ll
 Logarithm of marginalized data likelihood.
bool evalll
 If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save time.

Protected Attributes

int dimx
int dimy
int dimu
mat A
mat B
mat C
mat D
fsqmat R
fsqmat Q
mat _K
vec _yp
fsqmat _Ry
fsqmat _iRy

Friends

std::ostream & operator<< (std::ostream &os, const KalmanFull &kf)


Detailed Description

template<class sq_T>
class EKF< sq_T >

Extended Kalman Filter.

An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean.


Member Function Documentation

virtual void BM::bayes ( const vec &  dt  )  [pure virtual, inherited]

Incremental Bayes rule.

Parameters:
dt vector of input data


The documentation for this class was generated from the following file:
Generated on Mon Feb 18 21:48:43 2008 for mixpp by  doxygen 1.5.3