#include <libKF.h>
Public Member Functions | |
EKF (diffbifn *pfxu, diffbifn *phxu, sq_T Q0, sq_T R0, vec mu0, mat P0) | |
Default constructor. | |
void | bayes (const vec &dt, bool evalll=true) |
Here dt = [yt;ut] of appropriate dimensions. | |
virtual void | bayes (const vec &dt)=0 |
Incremental Bayes rule. | |
void | bayes (mat Dt) |
Batch Bayes rule (columns of Dt are observations). | |
epdf * | _epdf () |
Returns a pointer to the epdf representing posterior density on parameters. Use with care! | |
Public Attributes | |
vec | mu |
Mean value of the posterior density. | |
fsqmat | P |
Mean value of the posterior density. | |
double | ll |
Logarithm of marginalized data likelihood. | |
bool | evalll |
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save time. | |
Protected Attributes | |
int | dimx |
int | dimy |
int | dimu |
mat | A |
mat | B |
mat | C |
mat | D |
fsqmat | R |
fsqmat | Q |
mat | _K |
vec | _yp |
fsqmat | _Ry |
fsqmat | _iRy |
Friends | |
std::ostream & | operator<< (std::ostream &os, const KalmanFull &kf) |
An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean.
virtual void BM::bayes | ( | const vec & | dt | ) | [pure virtual, inherited] |
Incremental Bayes rule.
dt | vector of input data |