00001
00013 #ifndef EF_H
00014 #define EF_H
00015
00016
00017 #include "libBM.h"
00018 #include "../math/chmat.h"
00019
00020
00021 namespace bdm {
00022
00023
00025 extern Uniform_RNG UniRNG;
00027 extern Normal_RNG NorRNG;
00029 extern Gamma_RNG GamRNG;
00030
00037 class eEF : public epdf {
00038 public:
00039
00041 eEF ( ) :epdf ( ) {};
00043 virtual double lognc() const =0;
00045 virtual void dupdate ( mat &v ) {it_error ( "Not implemented" );};
00047 virtual double evallog_nn ( const vec &val ) const{it_error ( "Not implemented" );return 0.0;};
00049 virtual double evallog ( const vec &val ) const {double tmp;tmp= evallog_nn ( val )-lognc();it_assert_debug ( std::isfinite ( tmp ),"Infinite value" ); return tmp;}
00051 virtual vec evallog ( const mat &Val ) const {
00052 vec x ( Val.cols() );
00053 for ( int i=0;i<Val.cols();i++ ) {x ( i ) =evallog_nn ( Val.get_col ( i ) ) ;}
00054 return x-lognc();
00055 }
00057 virtual void pow ( double p ) {it_error ( "Not implemented" );};
00058 };
00059
00066 class mEF : public mpdf {
00067
00068 public:
00070 mEF ( ) :mpdf ( ) {};
00071 };
00072
00074 class BMEF : public BM {
00075 protected:
00077 double frg;
00079 double last_lognc;
00080 public:
00082 BMEF ( double frg0=1.0 ) :BM ( ), frg ( frg0 ) {}
00084 BMEF ( const BMEF &B ) :BM ( B ), frg ( B.frg ), last_lognc ( B.last_lognc ) {}
00086 virtual void set_statistics ( const BMEF* BM0 ) {it_error ( "Not implemented" );};
00088 virtual void bayes ( const vec &data, const double w ) {};
00089
00090 void bayes ( const vec &dt );
00092 virtual void flatten ( const BMEF * B ) {it_error ( "Not implemented" );}
00094
00095
00096 BMEF* _copy_ () const {it_error ( "function _copy_ not implemented for this BM" ); return NULL;};
00097 };
00098
00099 template<class sq_T>
00100 class mlnorm;
00101
00107 template<class sq_T>
00108 class enorm : public eEF {
00109 protected:
00111 vec mu;
00113 sq_T R;
00114 public:
00117
00118 enorm ( ) :eEF ( ), mu ( ),R ( ) {};
00119 enorm ( const vec &mu,const sq_T &R ) {set_parameters ( mu,R );}
00120 void set_parameters ( const vec &mu,const sq_T &R );
00122
00125
00127 void dupdate ( mat &v,double nu=1.0 );
00128
00129 vec sample() const;
00130 mat sample ( int N ) const;
00131 double evallog_nn ( const vec &val ) const;
00132 double lognc () const;
00133 vec mean() const {return mu;}
00134 vec variance() const {return diag ( R.to_mat() );}
00135
00136 mpdf* condition ( const RV &rvn ) const ;
00137
00138 epdf* marginal ( const RV &rv ) const;
00140
00143
00144 vec& _mu() {return mu;}
00145 void set_mu ( const vec mu0 ) { mu=mu0;}
00146 sq_T& _R() {return R;}
00147 const sq_T& _R() const {return R;}
00149
00150 };
00151
00158 class egiw : public eEF {
00159 protected:
00161 ldmat V;
00163 double nu;
00165 int dimx;
00167 int nPsi;
00168 public:
00171 egiw() :eEF() {};
00172 egiw ( int dimx0, ldmat V0, double nu0=-1.0 ) :eEF() {set_parameters ( dimx0,V0, nu0 );};
00173
00174 void set_parameters ( int dimx0, ldmat V0, double nu0=-1.0 ) {
00175 dimx=dimx0;
00176 nPsi = V0.rows()-dimx;
00177 dim = dimx* ( dimx+nPsi );
00178
00179 V=V0;
00180 if ( nu0<0 ) {
00181 nu = 0.1 +nPsi +2*dimx +2;
00182
00183 }
00184 else {
00185 nu=nu0;
00186 }
00187 }
00189
00190 vec sample() const;
00191 vec mean() const;
00192 vec variance() const;
00193 void mean_mat ( mat &M, mat&R ) const;
00195 double evallog_nn ( const vec &val ) const;
00196 double lognc () const;
00197 void pow ( double p ) {V*=p;nu*=p;};
00198
00201
00202 ldmat& _V() {return V;}
00203 const ldmat& _V() const {return V;}
00204 double& _nu() {return nu;}
00205 const double& _nu() const {return nu;}
00207 };
00208
00217 class eDirich: public eEF {
00218 protected:
00220 vec beta;
00222 double gamma;
00223 public:
00226
00227 eDirich () : eEF ( ) {};
00228 eDirich ( const eDirich &D0 ) : eEF () {set_parameters ( D0.beta );};
00229 eDirich ( const vec &beta0 ) {set_parameters ( beta0 );};
00230 void set_parameters ( const vec &beta0 ) {
00231 beta= beta0;
00232 dim = beta.length();
00233 gamma = sum ( beta );
00234 }
00236
00237 vec sample() const {it_error ( "Not implemented" );return vec_1 ( 0.0 );};
00238 vec mean() const {return beta/gamma;};
00239 vec variance() const {return elem_mult ( beta, ( beta+1 ) ) / ( gamma* ( gamma+1 ) );}
00241 double evallog_nn ( const vec &val ) const {
00242 double tmp; tmp= ( beta-1 ) *log ( val ); it_assert_debug ( std::isfinite ( tmp ),"Infinite value" );
00243 return tmp;
00244 };
00245 double lognc () const {
00246 double tmp;
00247 double gam=sum ( beta );
00248 double lgb=0.0;
00249 for ( int i=0;i<beta.length();i++ ) {lgb+=lgamma ( beta ( i ) );}
00250 tmp= lgb-lgamma ( gam );
00251 it_assert_debug ( std::isfinite ( tmp ),"Infinite value" );
00252 return tmp;
00253 };
00255 vec& _beta() {return beta;}
00257 };
00258
00260 class multiBM : public BMEF {
00261 protected:
00263 eDirich est;
00265 vec β
00266 public:
00268 multiBM ( ) : BMEF ( ),est ( ),beta ( est._beta() ) {if ( beta.length() >0 ) {last_lognc=est.lognc();}else{last_lognc=0.0;}}
00270 multiBM ( const multiBM &B ) : BMEF ( B ),est ( B.est ),beta ( est._beta() ) {}
00272 void set_statistics ( const BM* mB0 ) {const multiBM* mB=dynamic_cast<const multiBM*> ( mB0 ); beta=mB->beta;}
00273 void bayes ( const vec &dt ) {
00274 if ( frg<1.0 ) {beta*=frg;last_lognc=est.lognc();}
00275 beta+=dt;
00276 if ( evalll ) {ll=est.lognc()-last_lognc;}
00277 }
00278 double logpred ( const vec &dt ) const {
00279 eDirich pred ( est );
00280 vec &beta = pred._beta();
00281
00282 double lll;
00283 if ( frg<1.0 )
00284 {beta*=frg;lll=pred.lognc();}
00285 else
00286 if ( evalll ) {lll=last_lognc;}
00287 else{lll=pred.lognc();}
00288
00289 beta+=dt;
00290 return pred.lognc()-lll;
00291 }
00292 void flatten ( const BMEF* B ) {
00293 const multiBM* E=dynamic_cast<const multiBM*> ( B );
00294
00295 const vec &Eb=E->beta;
00296 beta*= ( sum ( Eb ) /sum ( beta ) );
00297 if ( evalll ) {last_lognc=est.lognc();}
00298 }
00299 const epdf& posterior() const {return est;};
00300 const eDirich* _e() const {return &est;};
00301 void set_parameters ( const vec &beta0 ) {
00302 est.set_parameters ( beta0 );
00303 if ( evalll ) {last_lognc=est.lognc();}
00304 }
00305 };
00306
00316 class egamma : public eEF {
00317 protected:
00319 vec alpha;
00321 vec beta;
00322 public :
00325 egamma ( ) :eEF ( ), alpha(0), beta(0) {};
00326 egamma ( const vec &a, const vec &b ) {set_parameters ( a, b );};
00327 void set_parameters ( const vec &a, const vec &b ) {alpha=a,beta=b;dim = alpha.length();};
00329
00330 vec sample() const;
00332
00333 double evallog ( const vec &val ) const;
00334 double lognc () const;
00336 vec& _alpha() {return alpha;}
00337 vec& _beta() {return beta;}
00338 vec mean() const {return elem_div ( alpha,beta );}
00339 vec variance() const {return elem_div ( alpha,elem_mult ( beta,beta ) ); }
00340 };
00341
00358 class eigamma : public egamma {
00359 protected:
00360 public :
00365
00366 vec sample() const {return 1.0/egamma::sample();};
00368 vec mean() const {return elem_div ( beta,alpha-1 );}
00369 vec variance() const {vec mea=mean(); return elem_div ( elem_mult ( mea,mea ),alpha-2 );}
00370 };
00371
00373
00374
00375
00376
00377
00378
00380
00381
00382
00383
00384
00385
00386
00388
00389 class euni: public epdf {
00390 protected:
00392 vec low;
00394 vec high;
00396 vec distance;
00398 double nk;
00400 double lnk;
00401 public:
00404 euni ( ) :epdf ( ) {}
00405 euni ( const vec &low0, const vec &high0 ) {set_parameters ( low0,high0 );}
00406 void set_parameters ( const vec &low0, const vec &high0 ) {
00407 distance = high0-low0;
00408 it_assert_debug ( min ( distance ) >0.0,"bad support" );
00409 low = low0;
00410 high = high0;
00411 nk = prod ( 1.0/distance );
00412 lnk = log ( nk );
00413 dim = low.length();
00414 }
00416
00417 double eval ( const vec &val ) const {return nk;}
00418 double evallog ( const vec &val ) const {return lnk;}
00419 vec sample() const {
00420 vec smp ( dim );
00421 #pragma omp critical
00422 UniRNG.sample_vector ( dim ,smp );
00423 return low+elem_mult ( distance,smp );
00424 }
00426 vec mean() const {return ( high-low ) /2.0;}
00427 vec variance() const {return ( pow ( high,2 ) +pow ( low,2 ) +elem_mult ( high,low ) ) /3.0;}
00428 };
00429
00430
00436 template<class sq_T>
00437 class mlnorm : public mEF {
00438 protected:
00440 enorm<sq_T> epdf;
00441 mat A;
00442 vec mu_const;
00443 vec& _mu;
00444 public:
00447 mlnorm ( ) :mEF (),epdf ( ),A ( ),_mu ( epdf._mu() ) {ep =&epdf; };
00448 mlnorm ( const mat &A, const vec &mu0, const sq_T &R ) :epdf ( ),_mu ( epdf._mu() ) {
00449 ep =&epdf; set_parameters ( A,mu0,R );
00450 };
00452 void set_parameters ( const mat &A, const vec &mu0, const sq_T &R );
00455 void condition ( const vec &cond );
00456
00458 vec& _mu_const() {return mu_const;}
00460 mat& _A() {return A;}
00462 mat _R() {return epdf._R().to_mat();}
00463
00464 template<class sq_M>
00465 friend std::ostream &operator<< ( std::ostream &os, mlnorm<sq_M> &ml );
00466 };
00467
00469 template<class sq_T>
00470 class mgnorm : public mEF {
00471 protected:
00473 enorm<sq_T> epdf;
00474 vec μ
00475 fnc* g;
00476 public:
00478 mgnorm() :mu ( epdf._mu() ) {ep=&epdf;}
00480 void set_parameters ( fnc* g0, const sq_T &R0 ) {g=g0; epdf.set_parameters ( zeros ( g->dimension() ), R0 );}
00481 void condition ( const vec &cond ) {mu=g->eval ( cond );};
00482 };
00483
00491 class mlstudent : public mlnorm<ldmat> {
00492 protected:
00493 ldmat Lambda;
00494 ldmat &_R;
00495 ldmat Re;
00496 public:
00497 mlstudent ( ) :mlnorm<ldmat> (),
00498 Lambda (), _R ( epdf._R() ) {}
00499 void set_parameters ( const mat &A0, const vec &mu0, const ldmat &R0, const ldmat& Lambda0 ) {
00500 it_assert_debug ( A0.rows() ==mu0.length(),"" );
00501 it_assert_debug ( R0.rows() ==A0.rows(),"" );
00502
00503 epdf.set_parameters ( mu0,Lambda );
00504 A = A0;
00505 mu_const = mu0;
00506 Re=R0;
00507 Lambda = Lambda0;
00508 }
00509 void condition ( const vec &cond ) {
00510 _mu = A*cond + mu_const;
00511 double zeta;
00512
00513 if ( ( cond.length() +1 ) ==Lambda.rows() ) {
00514 zeta = Lambda.invqform ( concat ( cond, vec_1 ( 1.0 ) ) );
00515 }
00516 else {
00517 zeta = Lambda.invqform ( cond );
00518 }
00519 _R = Re;
00520 _R*= ( 1+zeta );
00521 };
00522
00523 };
00533 class mgamma : public mEF {
00534 protected:
00536 egamma epdf;
00538 double k;
00540 vec &_beta;
00541
00542 public:
00544 mgamma ( ) : mEF ( ), epdf (), _beta ( epdf._beta() ) {ep=&epdf;};
00546 void set_parameters ( double k, const vec &beta0 );
00547 void condition ( const vec &val ) {_beta=k/val;};
00548 };
00549
00559 class migamma : public mEF {
00560 protected:
00562 eigamma epdf;
00564 double k;
00566 vec &_alpha;
00568 vec &_beta;
00569
00570 public:
00573 migamma ( ) : mEF (), epdf ( ), _alpha ( epdf._alpha() ), _beta ( epdf._beta() ) {ep=&epdf;};
00574 migamma ( const migamma &m ) : mEF (), epdf ( m.epdf ), _alpha ( epdf._alpha() ), _beta ( epdf._beta() ) {ep=&epdf;};
00576
00578 void set_parameters ( int len, double k0 ) {
00579 k=k0;
00580 epdf.set_parameters ( ( 1.0/ ( k*k ) +2.0 ) *ones ( len ) , ones ( len ) );
00581 dimc = dimension();
00582 };
00583 void condition ( const vec &val ) {
00584 _beta=elem_mult ( val, ( _alpha-1.0 ) );
00585 };
00586 };
00587
00599 class mgamma_fix : public mgamma {
00600 protected:
00602 double l;
00604 vec refl;
00605 public:
00607 mgamma_fix ( ) : mgamma ( ),refl () {};
00609 void set_parameters ( double k0 , vec ref0, double l0 ) {
00610 mgamma::set_parameters ( k0, ref0 );
00611 refl=pow ( ref0,1.0-l0 );l=l0;
00612 dimc=dimension();
00613 };
00614
00615 void condition ( const vec &val ) {vec mean=elem_mult ( refl,pow ( val,l ) ); _beta=k/mean;};
00616 };
00617
00618
00631 class migamma_ref : public migamma {
00632 protected:
00634 double l;
00636 vec refl;
00637 public:
00639 migamma_ref ( ) : migamma (),refl ( ) {};
00641 void set_parameters ( double k0 , vec ref0, double l0 ) {
00642 migamma::set_parameters ( ref0.length(), k0 );
00643 refl=pow ( ref0,1.0-l0 );
00644 l=l0;
00645 dimc = dimension();
00646 };
00647
00648 void condition ( const vec &val ) {
00649 vec mean=elem_mult ( refl,pow ( val,l ) );
00650 migamma::condition ( mean );
00651 };
00652 };
00653
00663 class elognorm: public enorm<ldmat>{
00664 public:
00665 vec sample() const {return exp(enorm<ldmat>::sample());};
00666 vec mean() const {vec var=enorm<ldmat>::variance();return exp(mu - 0.5*var);};
00667
00668 };
00669
00681 class mlognorm : public mpdf {
00682 protected:
00683 elognorm eno;
00685 double sig2;
00687 vec μ
00688 public:
00690 mlognorm ( ) : eno (), mu(eno._mu()) {ep=&eno;};
00692 void set_parameters ( int size, double k) {
00693 sig2 = 0.5*log(k*k+1);
00694 eno.set_parameters(zeros(size),2*sig2*eye(size));
00695
00696 dimc = size;
00697 };
00698
00699 void condition ( const vec &val ) {
00700 mu=log(val)-sig2;
00701 };
00702 };
00703
00707 class iW : public epdf{
00708 public:
00709 vec sample(){return vec();}
00710 };
00711
00713 enum RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
00719 class eEmp: public epdf {
00720 protected :
00722 int n;
00724 vec w;
00726 Array<vec> samples;
00727 public:
00730 eEmp ( ) :epdf ( ),w ( ),samples ( ) {};
00731 eEmp ( const eEmp &e ) : epdf ( e ), w ( e.w ), samples ( e.samples ) {};
00733
00735 void set_statistics ( const vec &w0, const epdf* pdf0 );
00737 void set_statistics ( const epdf* pdf0 , int n ) {set_statistics ( ones ( n ) /n,pdf0 );};
00739 void set_samples ( const epdf* pdf0 );
00741 void set_parameters ( int n0, bool copy=true ) {n=n0; w.set_size ( n0,copy );samples.set_size ( n0,copy );};
00743 vec& _w() {return w;};
00745 const vec& _w() const {return w;};
00747 Array<vec>& _samples() {return samples;};
00749 const Array<vec>& _samples() const {return samples;};
00751 ivec resample ( RESAMPLING_METHOD method=SYSTEMATIC );
00753 vec sample() const {it_error ( "Not implemented" );return 0;}
00755 double evallog ( const vec &val ) const {it_error ( "Not implemented" );return 0.0;}
00756 vec mean() const {
00757 vec pom=zeros ( dim );
00758 for ( int i=0;i<n;i++ ) {pom+=samples ( i ) *w ( i );}
00759 return pom;
00760 }
00761 vec variance() const {
00762 vec pom=zeros ( dim );
00763 for ( int i=0;i<n;i++ ) {pom+=pow ( samples ( i ),2 ) *w ( i );}
00764 return pom-pow ( mean(),2 );
00765 }
00767 void qbounds ( vec &lb, vec &ub, double perc=0.95 ) const {
00768
00769 lb.set_size(dim);
00770 ub.set_size(dim);
00771 lb = std::numeric_limits<double>::infinity();
00772 ub = -std::numeric_limits<double>::infinity();
00773 int j;
00774 for ( int i=0;i<n;i++ ) {
00775 for ( j=0;j<dim; j++ ) {
00776 if ( samples ( i ) ( j ) <lb ( j ) ) {lb ( j ) =samples ( i ) ( j );}
00777 if ( samples ( i ) ( j ) >ub ( j ) ) {ub ( j ) =samples ( i ) ( j );}
00778 }
00779 }
00780 }
00781 };
00782
00783
00785
00786 template<class sq_T>
00787 void enorm<sq_T>::set_parameters ( const vec &mu0, const sq_T &R0 ) {
00788
00789 mu = mu0;
00790 R = R0;
00791 dim = mu0.length();
00792 };
00793
00794 template<class sq_T>
00795 void enorm<sq_T>::dupdate ( mat &v, double nu ) {
00796
00797 };
00798
00799
00800
00801
00802
00803
00804 template<class sq_T>
00805 vec enorm<sq_T>::sample() const {
00806 vec x ( dim );
00807 #pragma omp critical
00808 NorRNG.sample_vector ( dim,x );
00809 vec smp = R.sqrt_mult ( x );
00810
00811 smp += mu;
00812 return smp;
00813 };
00814
00815 template<class sq_T>
00816 mat enorm<sq_T>::sample ( int N ) const {
00817 mat X ( dim,N );
00818 vec x ( dim );
00819 vec pom;
00820 int i;
00821
00822 for ( i=0;i<N;i++ ) {
00823 #pragma omp critical
00824 NorRNG.sample_vector ( dim,x );
00825 pom = R.sqrt_mult ( x );
00826 pom +=mu;
00827 X.set_col ( i, pom );
00828 }
00829
00830 return X;
00831 };
00832
00833
00834
00835
00836
00837
00838
00839
00840
00841 template<class sq_T>
00842 double enorm<sq_T>::evallog_nn ( const vec &val ) const {
00843
00844 double tmp=-0.5* ( R.invqform ( mu-val ) );
00845 return tmp;
00846 };
00847
00848 template<class sq_T>
00849 inline double enorm<sq_T>::lognc () const {
00850
00851 double tmp=0.5* ( R.cols() * 1.83787706640935 +R.logdet() );
00852 return tmp;
00853 };
00854
00855 template<class sq_T>
00856 void mlnorm<sq_T>::set_parameters ( const mat &A0, const vec &mu0, const sq_T &R0 ) {
00857 it_assert_debug ( A0.rows() ==mu0.length(),"" );
00858 it_assert_debug ( A0.rows() ==R0.rows(),"" );
00859
00860 epdf.set_parameters ( zeros ( A0.rows() ),R0 );
00861 A = A0;
00862 mu_const = mu0;
00863 dimc=A0.cols();
00864 }
00865
00866
00867
00868
00869
00870
00871
00872
00873
00874
00875
00876
00877
00878
00879
00880
00881
00882
00883
00884
00885
00886
00887
00888
00889
00890
00891 template<class sq_T>
00892 void mlnorm<sq_T>::condition ( const vec &cond ) {
00893 _mu = A*cond + mu_const;
00894
00895 }
00896
00897 template<class sq_T>
00898 epdf* enorm<sq_T>::marginal ( const RV &rvn ) const {
00899 it_assert_debug ( isnamed(), "rv description is not assigned" );
00900 ivec irvn = rvn.dataind ( rv );
00901
00902 sq_T Rn ( R,irvn );
00903
00904 enorm<sq_T>* tmp = new enorm<sq_T>;
00905 tmp->set_rv ( rvn );
00906 tmp->set_parameters ( mu ( irvn ), Rn );
00907 return tmp;
00908 }
00909
00910 template<class sq_T>
00911 mpdf* enorm<sq_T>::condition ( const RV &rvn ) const {
00912
00913 it_assert_debug ( isnamed(),"rvs are not assigned" );
00914
00915 RV rvc = rv.subt ( rvn );
00916 it_assert_debug ( ( rvc._dsize() +rvn._dsize() ==rv._dsize() ),"wrong rvn" );
00917
00918 ivec irvn = rvn.dataind ( rv );
00919 ivec irvc = rvc.dataind ( rv );
00920 ivec perm=concat ( irvn , irvc );
00921 sq_T Rn ( R,perm );
00922
00923
00924 mat S=Rn.to_mat();
00925
00926 int n=rvn._dsize()-1;
00927 int end=R.rows()-1;
00928 mat S11 = S.get ( 0,n, 0, n );
00929 mat S12 = S.get ( 0, n , rvn._dsize(), end );
00930 mat S22 = S.get ( rvn._dsize(), end, rvn._dsize(), end );
00931
00932 vec mu1 = mu ( irvn );
00933 vec mu2 = mu ( irvc );
00934 mat A=S12*inv ( S22 );
00935 sq_T R_n ( S11 - A *S12.T() );
00936
00937 mlnorm<sq_T>* tmp=new mlnorm<sq_T> ( );
00938 tmp->set_rv ( rvn ); tmp->set_rvc ( rvc );
00939 tmp->set_parameters ( A,mu1-A*mu2,R_n );
00940 return tmp;
00941 }
00942
00944
00945 template<class sq_T>
00946 std::ostream &operator<< ( std::ostream &os, mlnorm<sq_T> &ml ) {
00947 os << "A:"<< ml.A<<endl;
00948 os << "mu:"<< ml.mu_const<<endl;
00949 os << "R:" << ml.epdf._R().to_mat() <<endl;
00950 return os;
00951 };
00952
00953 }
00954 #endif //EF_H