00001
00013 #ifndef EF_H
00014 #define EF_H
00015
00016
00017 #include "libBM.h"
00018 #include "../math/chmat.h"
00019
00020
00021 namespace bdm
00022 {
00023
00024
00026 extern Uniform_RNG UniRNG;
00028 extern Normal_RNG NorRNG;
00030 extern Gamma_RNG GamRNG;
00031
00038 class eEF : public epdf
00039 {
00040 public:
00041
00043 eEF ( ) :epdf ( ) {};
00045 virtual double lognc() const =0;
00047 virtual void dupdate ( mat &v ) {it_error ( "Not implemented" );};
00049 virtual double evallog_nn ( const vec &val ) const{it_error ( "Not implemented" );return 0.0;};
00051 virtual double evallog ( const vec &val ) const {double tmp;tmp= evallog_nn ( val )-lognc();it_assert_debug ( std::isfinite ( tmp ),"Infinite value" ); return tmp;}
00053 virtual vec evallog ( const mat &Val ) const
00054 {
00055 vec x ( Val.cols() );
00056 for ( int i=0;i<Val.cols();i++ ) {x ( i ) =evallog_nn ( Val.get_col ( i ) ) ;}
00057 return x-lognc();
00058 }
00060 virtual void pow ( double p ) {it_error ( "Not implemented" );};
00061 };
00062
00069 class mEF : public mpdf
00070 {
00071
00072 public:
00074 mEF ( ) :mpdf ( ) {};
00075 };
00076
00078 class BMEF : public BM
00079 {
00080 protected:
00082 double frg;
00084 double last_lognc;
00085 public:
00087 BMEF ( double frg0=1.0 ) :BM ( ), frg ( frg0 ) {}
00089 BMEF ( const BMEF &B ) :BM ( B ), frg ( B.frg ), last_lognc ( B.last_lognc ) {}
00091 virtual void set_statistics ( const BMEF* BM0 ) {it_error ( "Not implemented" );};
00093 virtual void bayes ( const vec &data, const double w ) {};
00094
00095 void bayes ( const vec &dt );
00097 virtual void flatten ( const BMEF * B ) {it_error ( "Not implemented" );}
00099
00100
00101 BMEF* _copy_ () const {it_error ( "function _copy_ not implemented for this BM" ); return NULL;};
00102 };
00103
00104 template<class sq_T>
00105 class mlnorm;
00106
00112 template<class sq_T>
00113 class enorm : public eEF
00114 {
00115 protected:
00117 vec mu;
00119 sq_T R;
00120 public:
00123
00124 enorm ( ) :eEF ( ), mu ( ),R ( ) {};
00125 enorm ( const vec &mu,const sq_T &R ) {set_parameters ( mu,R );}
00126 void set_parameters ( const vec &mu,const sq_T &R );
00128
00131
00133 void dupdate ( mat &v,double nu=1.0 );
00134
00135 vec sample() const;
00136 mat sample ( int N ) const;
00137 double evallog_nn ( const vec &val ) const;
00138 double lognc () const;
00139 vec mean() const {return mu;}
00140 vec variance() const {return diag ( R.to_mat() );}
00141
00142 mpdf* condition ( const RV &rvn ) const ;
00143 enorm<sq_T>* marginal ( const RV &rv ) const;
00144
00146
00149
00150 vec& _mu() {return mu;}
00151 void set_mu ( const vec mu0 ) { mu=mu0;}
00152 sq_T& _R() {return R;}
00153 const sq_T& _R() const {return R;}
00155
00156 };
00157
00164 class egiw : public eEF
00165 {
00166 protected:
00168 ldmat V;
00170 double nu;
00172 int dimx;
00174 int nPsi;
00175 public:
00178 egiw() :eEF() {};
00179 egiw ( int dimx0, ldmat V0, double nu0=-1.0 ) :eEF() {set_parameters ( dimx0,V0, nu0 );};
00180
00181 void set_parameters ( int dimx0, ldmat V0, double nu0=-1.0 )
00182 {
00183 dimx=dimx0;
00184 nPsi = V0.rows()-dimx;
00185 dim = dimx* ( dimx+nPsi );
00186
00187 V=V0;
00188 if ( nu0<0 )
00189 {
00190 nu = 0.1 +nPsi +2*dimx +2;
00191
00192 }
00193 else
00194 {
00195 nu=nu0;
00196 }
00197 }
00199
00200 vec sample() const;
00201 vec mean() const;
00202 vec variance() const;
00203 void mean_mat ( mat &M, mat&R ) const;
00205 double evallog_nn ( const vec &val ) const;
00206 double lognc () const;
00207 void pow ( double p ) {V*=p;nu*=p;};
00208
00211
00212 ldmat& _V() {return V;}
00213 const ldmat& _V() const {return V;}
00214 double& _nu() {return nu;}
00215 const double& _nu() const {return nu;}
00217 };
00218
00227 class eDirich: public eEF
00228 {
00229 protected:
00231 vec beta;
00233 double gamma;
00234 public:
00237
00238 eDirich () : eEF ( ) {};
00239 eDirich ( const eDirich &D0 ) : eEF () {set_parameters ( D0.beta );};
00240 eDirich ( const vec &beta0 ) {set_parameters ( beta0 );};
00241 void set_parameters ( const vec &beta0 )
00242 {
00243 beta= beta0;
00244 dim = beta.length();
00245 gamma = sum ( beta );
00246 }
00248
00249 vec sample() const {it_error ( "Not implemented" );return vec_1 ( 0.0 );};
00250 vec mean() const {return beta/gamma;};
00251 vec variance() const {return elem_mult ( beta, ( beta+1 ) ) / ( gamma* ( gamma+1 ) );}
00253 double evallog_nn ( const vec &val ) const
00254 {
00255 double tmp; tmp= ( beta-1 ) *log ( val ); it_assert_debug ( std::isfinite ( tmp ),"Infinite value" );
00256 return tmp;
00257 };
00258 double lognc () const
00259 {
00260 double tmp;
00261 double gam=sum ( beta );
00262 double lgb=0.0;
00263 for ( int i=0;i<beta.length();i++ ) {lgb+=lgamma ( beta ( i ) );}
00264 tmp= lgb-lgamma ( gam );
00265 it_assert_debug ( std::isfinite ( tmp ),"Infinite value" );
00266 return tmp;
00267 };
00269 vec& _beta() {return beta;}
00271 };
00272
00274 class multiBM : public BMEF
00275 {
00276 protected:
00278 eDirich est;
00280 vec β
00281 public:
00283 multiBM ( ) : BMEF ( ),est ( ),beta ( est._beta() )
00284 {
00285 if ( beta.length() >0 ) {last_lognc=est.lognc();}
00286 else{last_lognc=0.0;}
00287 }
00289 multiBM ( const multiBM &B ) : BMEF ( B ),est ( B.est ),beta ( est._beta() ) {}
00291 void set_statistics ( const BM* mB0 ) {const multiBM* mB=dynamic_cast<const multiBM*> ( mB0 ); beta=mB->beta;}
00292 void bayes ( const vec &dt )
00293 {
00294 if ( frg<1.0 ) {beta*=frg;last_lognc=est.lognc();}
00295 beta+=dt;
00296 if ( evalll ) {ll=est.lognc()-last_lognc;}
00297 }
00298 double logpred ( const vec &dt ) const
00299 {
00300 eDirich pred ( est );
00301 vec &beta = pred._beta();
00302
00303 double lll;
00304 if ( frg<1.0 )
00305 {beta*=frg;lll=pred.lognc();}
00306 else
00307 if ( evalll ) {lll=last_lognc;}
00308 else{lll=pred.lognc();}
00309
00310 beta+=dt;
00311 return pred.lognc()-lll;
00312 }
00313 void flatten ( const BMEF* B )
00314 {
00315 const multiBM* E=dynamic_cast<const multiBM*> ( B );
00316
00317 const vec &Eb=E->beta;
00318 beta*= ( sum ( Eb ) /sum ( beta ) );
00319 if ( evalll ) {last_lognc=est.lognc();}
00320 }
00321 const epdf& posterior() const {return est;};
00322 const eDirich* _e() const {return &est;};
00323 void set_parameters ( const vec &beta0 )
00324 {
00325 est.set_parameters ( beta0 );
00326 if ( evalll ) {last_lognc=est.lognc();}
00327 }
00328 };
00329
00339 class egamma : public eEF
00340 {
00341 protected:
00343 vec alpha;
00345 vec beta;
00346 public :
00349 egamma ( ) :eEF ( ), alpha ( 0 ), beta ( 0 ) {};
00350 egamma ( const vec &a, const vec &b ) {set_parameters ( a, b );};
00351 void set_parameters ( const vec &a, const vec &b ) {alpha=a,beta=b;dim = alpha.length();};
00353
00354 vec sample() const;
00356
00357 double evallog ( const vec &val ) const;
00358 double lognc () const;
00360 vec& _alpha() {return alpha;}
00361 vec& _beta() {return beta;}
00362 vec mean() const {return elem_div ( alpha,beta );}
00363 vec variance() const {return elem_div ( alpha,elem_mult ( beta,beta ) ); }
00364 };
00365
00382 class eigamma : public egamma
00383 {
00384 protected:
00385 public :
00390
00391 vec sample() const {return 1.0/egamma::sample();};
00393 vec mean() const {return elem_div ( beta,alpha-1 );}
00394 vec variance() const {vec mea=mean(); return elem_div ( elem_mult ( mea,mea ),alpha-2 );}
00395 };
00396
00398
00399
00400
00401
00402
00403
00405
00406
00407
00408
00409
00410
00411
00413
00414 class euni: public epdf
00415 {
00416 protected:
00418 vec low;
00420 vec high;
00422 vec distance;
00424 double nk;
00426 double lnk;
00427 public:
00430 euni ( ) :epdf ( ) {}
00431 euni ( const vec &low0, const vec &high0 ) {set_parameters ( low0,high0 );}
00432 void set_parameters ( const vec &low0, const vec &high0 )
00433 {
00434 distance = high0-low0;
00435 it_assert_debug ( min ( distance ) >0.0,"bad support" );
00436 low = low0;
00437 high = high0;
00438 nk = prod ( 1.0/distance );
00439 lnk = log ( nk );
00440 dim = low.length();
00441 }
00443
00444 double eval ( const vec &val ) const {return nk;}
00445 double evallog ( const vec &val ) const {return lnk;}
00446 vec sample() const
00447 {
00448 vec smp ( dim );
00449 #pragma omp critical
00450 UniRNG.sample_vector ( dim ,smp );
00451 return low+elem_mult ( distance,smp );
00452 }
00454 vec mean() const {return ( high-low ) /2.0;}
00455 vec variance() const {return ( pow ( high,2 ) +pow ( low,2 ) +elem_mult ( high,low ) ) /3.0;}
00456 };
00457
00458
00464 template<class sq_T>
00465 class mlnorm : public mEF
00466 {
00467 protected:
00469 enorm<sq_T> epdf;
00470 mat A;
00471 vec mu_const;
00472 vec& _mu;
00473 public:
00476 mlnorm ( ) :mEF (),epdf ( ),A ( ),_mu ( epdf._mu() ) {ep =&epdf; };
00477 mlnorm ( const mat &A, const vec &mu0, const sq_T &R ) :epdf ( ),_mu ( epdf._mu() )
00478 {
00479 ep =&epdf; set_parameters ( A,mu0,R );
00480 };
00482 void set_parameters ( const mat &A, const vec &mu0, const sq_T &R );
00485 void condition ( const vec &cond );
00486
00488 vec& _mu_const() {return mu_const;}
00490 mat& _A() {return A;}
00492 mat _R() {return epdf._R().to_mat();}
00493
00494 template<class sq_M>
00495 friend std::ostream &operator<< ( std::ostream &os, mlnorm<sq_M> &ml );
00496 };
00497
00499 template<class sq_T>
00500 class mgnorm : public mEF
00501 {
00502 protected:
00504 enorm<sq_T> epdf;
00505 vec μ
00506 fnc* g;
00507 public:
00509 mgnorm() :mu ( epdf._mu() ) {ep=&epdf;}
00511 void set_parameters ( fnc* g0, const sq_T &R0 ) {g=g0; epdf.set_parameters ( zeros ( g->dimension() ), R0 );}
00512 void condition ( const vec &cond ) {mu=g->eval ( cond );};
00513 };
00514
00522 class mlstudent : public mlnorm<ldmat>
00523 {
00524 protected:
00525 ldmat Lambda;
00526 ldmat &_R;
00527 ldmat Re;
00528 public:
00529 mlstudent ( ) :mlnorm<ldmat> (),
00530 Lambda (), _R ( epdf._R() ) {}
00531 void set_parameters ( const mat &A0, const vec &mu0, const ldmat &R0, const ldmat& Lambda0 )
00532 {
00533 it_assert_debug ( A0.rows() ==mu0.length(),"" );
00534 it_assert_debug ( R0.rows() ==A0.rows(),"" );
00535
00536 epdf.set_parameters ( mu0,Lambda );
00537 A = A0;
00538 mu_const = mu0;
00539 Re=R0;
00540 Lambda = Lambda0;
00541 }
00542 void condition ( const vec &cond )
00543 {
00544 _mu = A*cond + mu_const;
00545 double zeta;
00546
00547 if ( ( cond.length() +1 ) ==Lambda.rows() )
00548 {
00549 zeta = Lambda.invqform ( concat ( cond, vec_1 ( 1.0 ) ) );
00550 }
00551 else
00552 {
00553 zeta = Lambda.invqform ( cond );
00554 }
00555 _R = Re;
00556 _R*= ( 1+zeta );
00557 };
00558
00559 };
00569 class mgamma : public mEF
00570 {
00571 protected:
00573 egamma epdf;
00575 double k;
00577 vec &_beta;
00578
00579 public:
00581 mgamma ( ) : mEF ( ), epdf (), _beta ( epdf._beta() ) {ep=&epdf;};
00583 void set_parameters ( double k, const vec &beta0 );
00584 void condition ( const vec &val ) {_beta=k/val;};
00585 };
00586
00596 class migamma : public mEF
00597 {
00598 protected:
00600 eigamma epdf;
00602 double k;
00604 vec &_alpha;
00606 vec &_beta;
00607
00608 public:
00611 migamma ( ) : mEF (), epdf ( ), _alpha ( epdf._alpha() ), _beta ( epdf._beta() ) {ep=&epdf;};
00612 migamma ( const migamma &m ) : mEF (), epdf ( m.epdf ), _alpha ( epdf._alpha() ), _beta ( epdf._beta() ) {ep=&epdf;};
00614
00616 void set_parameters ( int len, double k0 )
00617 {
00618 k=k0;
00619 epdf.set_parameters ( ( 1.0/ ( k*k ) +2.0 ) *ones ( len ) , ones ( len ) );
00620 dimc = dimension();
00621 };
00622 void condition ( const vec &val )
00623 {
00624 _beta=elem_mult ( val, ( _alpha-1.0 ) );
00625 };
00626 };
00627
00639 class mgamma_fix : public mgamma
00640 {
00641 protected:
00643 double l;
00645 vec refl;
00646 public:
00648 mgamma_fix ( ) : mgamma ( ),refl () {};
00650 void set_parameters ( double k0 , vec ref0, double l0 )
00651 {
00652 mgamma::set_parameters ( k0, ref0 );
00653 refl=pow ( ref0,1.0-l0 );l=l0;
00654 dimc=dimension();
00655 };
00656
00657 void condition ( const vec &val ) {vec mean=elem_mult ( refl,pow ( val,l ) ); _beta=k/mean;};
00658 };
00659
00660
00673 class migamma_ref : public migamma
00674 {
00675 protected:
00677 double l;
00679 vec refl;
00680 public:
00682 migamma_ref ( ) : migamma (),refl ( ) {};
00684 void set_parameters ( double k0 , vec ref0, double l0 )
00685 {
00686 migamma::set_parameters ( ref0.length(), k0 );
00687 refl=pow ( ref0,1.0-l0 );
00688 l=l0;
00689 dimc = dimension();
00690 };
00691
00692 void condition ( const vec &val )
00693 {
00694 vec mean=elem_mult ( refl,pow ( val,l ) );
00695 migamma::condition ( mean );
00696 };
00697 };
00698
00708 class elognorm: public enorm<ldmat>
00709 {
00710 public:
00711 vec sample() const {return exp ( enorm<ldmat>::sample() );};
00712 vec mean() const {vec var=enorm<ldmat>::variance();return exp ( mu - 0.5*var );};
00713
00714 };
00715
00727 class mlognorm : public mpdf
00728 {
00729 protected:
00730 elognorm eno;
00732 double sig2;
00734 vec μ
00735 public:
00737 mlognorm ( ) : eno (), mu ( eno._mu() ) {ep=&eno;};
00739 void set_parameters ( int size, double k )
00740 {
00741 sig2 = 0.5*log ( k*k+1 );
00742 eno.set_parameters ( zeros ( size ),2*sig2*eye ( size ) );
00743
00744 dimc = size;
00745 };
00746
00747 void condition ( const vec &val )
00748 {
00749 mu=log ( val )-sig2;
00750 };
00751 };
00752
00756 class eWishartCh : public epdf
00757 {
00758 protected:
00760 chmat Y;
00762 int p;
00764 double delta;
00765 public:
00766 void set_parameters ( const mat &Y0, const double delta0 ) {Y=chmat ( Y0 );delta=delta0; p=Y.rows(); dim = p*p; }
00767 mat sample_mat() const
00768 {
00769 mat X=zeros ( p,p );
00770
00771
00772 for ( int i=0;i<p;i++ )
00773 {
00774 GamRNG.setup ( 0.5* ( delta-i ) , 0.5 );
00775 #pragma omp critical
00776 X ( i,i ) =sqrt ( GamRNG() );
00777 }
00778
00779 for ( int i=0;i<p;i++ )
00780 {
00781 for ( int j=i+1;j<p;j++ )
00782 {
00783 #pragma omp critical
00784 X ( i,j ) =NorRNG.sample();
00785 }
00786 }
00787 return X*Y._Ch();
00788 }
00789 vec sample () const
00790 {
00791 return vec ( sample_mat()._data(),p*p );
00792 }
00794 void setY ( const mat &Ch0 ) {copy_vector ( dim,Ch0._data(), Y._Ch()._data() );}
00796 void _setY ( const vec &ch0 ) {copy_vector ( dim, ch0._data(), Y._Ch()._data() ); }
00798 const chmat& getY()const {return Y;}
00799 };
00800
00801 class eiWishartCh: public epdf
00802 {
00803 protected:
00804 eWishartCh W;
00805 int p;
00806 double delta;
00807 public:
00808 void set_parameters ( const mat &Y0, const double delta0) {
00809 delta = delta0;
00810 W.set_parameters ( inv ( Y0 ),delta0 );
00811 dim = W.dimension(); p=Y0.rows();
00812 }
00813 vec sample() const {mat iCh; iCh=inv ( W.sample_mat() ); return vec ( iCh._data(),dim );}
00814 void _setY ( const vec &y0 )
00815 {
00816 mat Ch ( p,p );
00817 mat iCh ( p,p );
00818 copy_vector ( dim, y0._data(), Ch._data() );
00819
00820 iCh=inv ( Ch );
00821 W.setY ( iCh );
00822 }
00823 virtual double evallog ( const vec &val ) const {
00824 chmat X(p);
00825 const chmat& Y=W.getY();
00826
00827 copy_vector(p*p,val._data(),X._Ch()._data());
00828 chmat iX(p);X.inv(iX);
00829
00830
00831 mat M=Y.to_mat()*iX.to_mat();
00832
00833 double log1 = 0.5*p*(2*Y.logdet())-0.5*(delta+p+1)*(2*X.logdet())-0.5*trace(M);
00834
00835
00836
00837
00838
00839
00840
00841
00842
00843 return log1;
00844 };
00845
00846 };
00847
00848 class rwiWishartCh : public mpdf
00849 {
00850 protected:
00851 eiWishartCh eiW;
00853 double sqd;
00854
00855 vec refl;
00856 double l;
00857 int p;
00858 public:
00859 void set_parameters ( int p0, double k, vec ref0, double l0 )
00860 {
00861 p=p0;
00862 double delta = 2/(k*k)+p+3;
00863 sqd=sqrt ( delta-p-1 );
00864 l=l0;
00865 refl=pow(ref0,1-l);
00866
00867 eiW.set_parameters ( eye ( p ),delta );
00868 ep=&eiW;
00869 dimc=eiW.dimension();
00870 }
00871 void condition ( const vec &c ) {
00872 vec z=c;
00873 int ri=0;
00874 for(int i=0;i<p*p;i+=(p+1)){
00875 z(i) = pow(z(i),l)*refl(ri);
00876 ri++;
00877 }
00878
00879 eiW._setY ( sqd*z );
00880 }
00881 };
00882
00884 enum RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
00890 class eEmp: public epdf
00891 {
00892 protected :
00894 int n;
00896 vec w;
00898 Array<vec> samples;
00899 public:
00902 eEmp ( ) :epdf ( ),w ( ),samples ( ) {};
00903 eEmp ( const eEmp &e ) : epdf ( e ), w ( e.w ), samples ( e.samples ) {};
00905
00907 void set_statistics ( const vec &w0, const epdf* pdf0 );
00909 void set_statistics ( const epdf* pdf0 , int n ) {set_statistics ( ones ( n ) /n,pdf0 );};
00911 void set_samples ( const epdf* pdf0 );
00913 void set_parameters ( int n0, bool copy=true ) {n=n0; w.set_size ( n0,copy );samples.set_size ( n0,copy );};
00915 vec& _w() {return w;};
00917 const vec& _w() const {return w;};
00919 Array<vec>& _samples() {return samples;};
00921 const Array<vec>& _samples() const {return samples;};
00923 ivec resample ( RESAMPLING_METHOD method=SYSTEMATIC );
00925 vec sample() const {it_error ( "Not implemented" );return 0;}
00927 double evallog ( const vec &val ) const {it_error ( "Not implemented" );return 0.0;}
00928 vec mean() const
00929 {
00930 vec pom=zeros ( dim );
00931 for ( int i=0;i<n;i++ ) {pom+=samples ( i ) *w ( i );}
00932 return pom;
00933 }
00934 vec variance() const
00935 {
00936 vec pom=zeros ( dim );
00937 for ( int i=0;i<n;i++ ) {pom+=pow ( samples ( i ),2 ) *w ( i );}
00938 return pom-pow ( mean(),2 );
00939 }
00941 void qbounds ( vec &lb, vec &ub, double perc=0.95 ) const
00942 {
00943
00944 lb.set_size ( dim );
00945 ub.set_size ( dim );
00946 lb = std::numeric_limits<double>::infinity();
00947 ub = -std::numeric_limits<double>::infinity();
00948 int j;
00949 for ( int i=0;i<n;i++ )
00950 {
00951 for ( j=0;j<dim; j++ )
00952 {
00953 if ( samples ( i ) ( j ) <lb ( j ) ) {lb ( j ) =samples ( i ) ( j );}
00954 if ( samples ( i ) ( j ) >ub ( j ) ) {ub ( j ) =samples ( i ) ( j );}
00955 }
00956 }
00957 }
00958 };
00959
00960
00962
00963 template<class sq_T>
00964 void enorm<sq_T>::set_parameters ( const vec &mu0, const sq_T &R0 )
00965 {
00966
00967 mu = mu0;
00968 R = R0;
00969 dim = mu0.length();
00970 };
00971
00972 template<class sq_T>
00973 void enorm<sq_T>::dupdate ( mat &v, double nu )
00974 {
00975
00976 };
00977
00978
00979
00980
00981
00982
00983 template<class sq_T>
00984 vec enorm<sq_T>::sample() const
00985 {
00986 vec x ( dim );
00987 #pragma omp critical
00988 NorRNG.sample_vector ( dim,x );
00989 vec smp = R.sqrt_mult ( x );
00990
00991 smp += mu;
00992 return smp;
00993 };
00994
00995 template<class sq_T>
00996 mat enorm<sq_T>::sample ( int N ) const
00997 {
00998 mat X ( dim,N );
00999 vec x ( dim );
01000 vec pom;
01001 int i;
01002
01003 for ( i=0;i<N;i++ )
01004 {
01005 #pragma omp critical
01006 NorRNG.sample_vector ( dim,x );
01007 pom = R.sqrt_mult ( x );
01008 pom +=mu;
01009 X.set_col ( i, pom );
01010 }
01011
01012 return X;
01013 };
01014
01015
01016
01017
01018
01019
01020
01021
01022
01023 template<class sq_T>
01024 double enorm<sq_T>::evallog_nn ( const vec &val ) const
01025 {
01026
01027 double tmp=-0.5* ( R.invqform ( mu-val ) );
01028 return tmp;
01029 };
01030
01031 template<class sq_T>
01032 inline double enorm<sq_T>::lognc () const
01033 {
01034
01035 double tmp=0.5* ( R.cols() * 1.83787706640935 +R.logdet() );
01036 return tmp;
01037 };
01038
01039 template<class sq_T>
01040 void mlnorm<sq_T>::set_parameters ( const mat &A0, const vec &mu0, const sq_T &R0 )
01041 {
01042 it_assert_debug ( A0.rows() ==mu0.length(),"" );
01043 it_assert_debug ( A0.rows() ==R0.rows(),"" );
01044
01045 epdf.set_parameters ( zeros ( A0.rows() ),R0 );
01046 A = A0;
01047 mu_const = mu0;
01048 dimc=A0.cols();
01049 }
01050
01051
01052
01053
01054
01055
01056
01057
01058
01059
01060
01061
01062
01063
01064
01065
01066
01067
01068
01069
01070
01071
01072
01073
01074
01075
01076 template<class sq_T>
01077 void mlnorm<sq_T>::condition ( const vec &cond )
01078 {
01079 _mu = A*cond + mu_const;
01080
01081 }
01082
01083 template<class sq_T>
01084 enorm<sq_T>* enorm<sq_T>::marginal ( const RV &rvn ) const
01085 {
01086 it_assert_debug ( isnamed(), "rv description is not assigned" );
01087 ivec irvn = rvn.dataind ( rv );
01088
01089 sq_T Rn ( R,irvn );
01090
01091 enorm<sq_T>* tmp = new enorm<sq_T>;
01092 tmp->set_rv ( rvn );
01093 tmp->set_parameters ( mu ( irvn ), Rn );
01094 return tmp;
01095 }
01096
01097 template<class sq_T>
01098 mpdf* enorm<sq_T>::condition ( const RV &rvn ) const
01099 {
01100
01101 it_assert_debug ( isnamed(),"rvs are not assigned" );
01102
01103 RV rvc = rv.subt ( rvn );
01104 it_assert_debug ( ( rvc._dsize() +rvn._dsize() ==rv._dsize() ),"wrong rvn" );
01105
01106 ivec irvn = rvn.dataind ( rv );
01107 ivec irvc = rvc.dataind ( rv );
01108 ivec perm=concat ( irvn , irvc );
01109 sq_T Rn ( R,perm );
01110
01111
01112 mat S=Rn.to_mat();
01113
01114 int n=rvn._dsize()-1;
01115 int end=R.rows()-1;
01116 mat S11 = S.get ( 0,n, 0, n );
01117 mat S12 = S.get ( 0, n , rvn._dsize(), end );
01118 mat S22 = S.get ( rvn._dsize(), end, rvn._dsize(), end );
01119
01120 vec mu1 = mu ( irvn );
01121 vec mu2 = mu ( irvc );
01122 mat A=S12*inv ( S22 );
01123 sq_T R_n ( S11 - A *S12.T() );
01124
01125 mlnorm<sq_T>* tmp=new mlnorm<sq_T> ( );
01126 tmp->set_rv ( rvn ); tmp->set_rvc ( rvc );
01127 tmp->set_parameters ( A,mu1-A*mu2,R_n );
01128 return tmp;
01129 }
01130
01132
01133 template<class sq_T>
01134 std::ostream &operator<< ( std::ostream &os, mlnorm<sq_T> &ml )
01135 {
01136 os << "A:"<< ml.A<<endl;
01137 os << "mu:"<< ml.mu_const<<endl;
01138 os << "R:" << ml.epdf._R().to_mat() <<endl;
01139 return os;
01140 };
01141
01142 }
01143 #endif //EF_H