EKF< sq_T > Class Template Reference

Extended Kalman Filter. More...

#include <libKF.h>

Inheritance diagram for EKF< sq_T >:

Inheritance graph
[legend]
Collaboration diagram for EKF< sq_T >:

Collaboration graph
[legend]

List of all members.

Public Member Functions

 EKF (RV rvx, RV rvy, RV rvu)
 Default constructor.
void set_parameters (diffbifn *pfxu, diffbifn *phxu, const sq_T Q0, const sq_T R0)
void bayes (const vec &dt)
 Here dt = [yt;ut] of appropriate dimensions.
void set_parameters (const mat &A0, const mat &B0, const mat &C0, const mat &D0, const ldmat &R0, const ldmat &Q0)
 Set parameters with check of relevance.
void set_est (const vec &mu0, const ldmat &P0)
 Set estimate values, used e.g. in initialization.
void bayes (mat Dt)
 Batch Bayes rule (columns of Dt are observations).
epdf_epdf ()
 Returns a pointer to the epdf representing posterior density on parameters. Use with care!

Protected Attributes

RV rvy
RV rvu
int dimx
int dimy
int dimu
mat A
mat B
mat C
mat D
ldmat R
ldmat Q
enorm< ldmat > est
 posterior density on $x_t$
enorm< ldmat > fy
 preditive density on $y_t$
mat _K
vec * _yp
ldmat * _Ry
ldmat * _iRy
vec * _mu
ldmat * _P
ldmat * _iP
RV rv
 Random variable of the posterior.
double ll
 Logarithm of marginalized data likelihood.
bool evalll
 If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save time.


Detailed Description

template<class sq_T>
class EKF< sq_T >

Extended Kalman Filter.

An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean.


The documentation for this class was generated from the following file:
Generated on Thu Feb 28 16:54:47 2008 for mixpp by  doxygen 1.5.3