#include <libKF.h>
Public Member Functions | |
EKF (RV rvx, RV rvy, RV rvu) | |
Default constructor. | |
void | set_parameters (diffbifn *pfxu, diffbifn *phxu, const sq_T Q0, const sq_T R0) |
void | bayes (const vec &dt) |
Here dt = [yt;ut] of appropriate dimensions. | |
void | set_parameters (const mat &A0, const mat &B0, const mat &C0, const mat &D0, const ldmat &R0, const ldmat &Q0) |
Set parameters with check of relevance. | |
void | set_est (const vec &mu0, const ldmat &P0) |
Set estimate values, used e.g. in initialization. | |
void | bayes (mat Dt) |
Batch Bayes rule (columns of Dt are observations). | |
epdf & | _epdf () |
Returns a pointer to the epdf representing posterior density on parameters. Use with care! | |
Protected Attributes | |
RV | rvy |
RV | rvu |
int | dimx |
int | dimy |
int | dimu |
mat | A |
mat | B |
mat | C |
mat | D |
ldmat | R |
ldmat | Q |
enorm< ldmat > | est |
posterior density on $x_t$ | |
enorm< ldmat > | fy |
preditive density on $y_t$ | |
mat | _K |
vec * | _yp |
ldmat * | _Ry |
ldmat * | _iRy |
vec * | _mu |
ldmat * | _P |
ldmat * | _iP |
RV | rv |
Random variable of the posterior. | |
double | ll |
Logarithm of marginalized data likelihood. | |
bool | evalll |
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save time. |
An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean.