00001 
00013 #ifndef EF_H
00014 #define EF_H
00015 
00016 
00017 #include "libBM.h"
00018 #include "../math/chmat.h"
00019 
00020 
00021 namespace bdm
00022 {
00023 
00024 
00026         extern Uniform_RNG UniRNG;
00028         extern Normal_RNG NorRNG;
00030         extern Gamma_RNG GamRNG;
00031 
00038         class eEF : public epdf
00039         {
00040                 public:
00041 
00043                         eEF ( ) :epdf ( ) {};
00045                         virtual double lognc() const =0;
00047                         virtual void dupdate ( mat &v ) {it_error ( "Not implemented" );};
00049                         virtual double evallog_nn ( const vec &val ) const{it_error ( "Not implemented" );return 0.0;};
00051                         virtual double evallog ( const vec &val ) const {double tmp;tmp= evallog_nn ( val )-lognc();it_assert_debug ( std::isfinite ( tmp ),"Infinite value" ); return tmp;}
00053                         virtual vec evallog ( const mat &Val ) const
00054                         {
00055                                 vec x ( Val.cols() );
00056                                 for ( int i=0;i<Val.cols();i++ ) {x ( i ) =evallog_nn ( Val.get_col ( i ) ) ;}
00057                                 return x-lognc();
00058                         }
00060                         virtual void pow ( double p ) {it_error ( "Not implemented" );};
00061         };
00062 
00069         class mEF : public mpdf
00070         {
00071 
00072                 public:
00074                         mEF ( ) :mpdf ( ) {};
00075         };
00076 
00078         class BMEF : public BM
00079         {
00080                 protected:
00082                         double frg;
00084                         double last_lognc;
00085                 public:
00087                         BMEF ( double frg0=1.0 ) :BM ( ), frg ( frg0 ) {}
00089                         BMEF ( const BMEF &B ) :BM ( B ), frg ( B.frg ), last_lognc ( B.last_lognc ) {}
00091                         virtual void set_statistics ( const BMEF* BM0 ) {it_error ( "Not implemented" );};
00093                         virtual void bayes ( const vec &data, const double w ) {};
00094                         
00095                         void bayes ( const vec &dt );
00097                         virtual void flatten ( const BMEF * B ) {it_error ( "Not implemented" );}
00099 
00100 
00101                         BMEF* _copy_ () const {it_error ( "function _copy_ not implemented for this BM" ); return NULL;};
00102         };
00103 
00104         template<class sq_T>
00105         class mlnorm;
00106 
00112         template<class sq_T>
00113         class enorm : public eEF
00114         {
00115                 protected:
00117                         vec mu;
00119                         sq_T R;
00120                 public:
00123 
00124                         enorm ( ) :eEF ( ), mu ( ),R ( ) {};
00125                         enorm ( const vec &mu,const sq_T &R ) {set_parameters ( mu,R );}
00126                         void set_parameters ( const vec &mu,const sq_T &R );
00128 
00131 
00133                         void dupdate ( mat &v,double nu=1.0 );
00134 
00135                         vec sample() const;
00136                         mat sample ( int N ) const;
00137                         double evallog_nn ( const vec &val ) const;
00138                         double lognc () const;
00139                         vec mean() const {return mu;}
00140                         vec variance() const {return diag ( R.to_mat() );}
00141 
00142                         mpdf* condition ( const RV &rvn ) const ;
00143         enorm<sq_T>* marginal ( const RV &rv ) const;
00144 
00146 
00149 
00150                         vec& _mu() {return mu;}
00151                         void set_mu ( const vec mu0 ) { mu=mu0;}
00152                         sq_T& _R() {return R;}
00153                         const sq_T& _R() const {return R;}
00155 
00156         };
00157 
00164         class egiw : public eEF
00165         {
00166                 protected:
00168                         ldmat V;
00170                         double nu;
00172                         int dimx;
00174                         int nPsi;
00175                 public:
00178                         egiw() :eEF() {};
00179                         egiw ( int dimx0, ldmat V0, double nu0=-1.0 ) :eEF() {set_parameters ( dimx0,V0, nu0 );};
00180 
00181                         void set_parameters ( int dimx0, ldmat V0, double nu0=-1.0 )
00182                         {
00183                                 dimx=dimx0;
00184                                 nPsi = V0.rows()-dimx;
00185                                 dim = dimx* ( dimx+nPsi ); 
00186 
00187                                 V=V0;
00188                                 if ( nu0<0 )
00189                                 {
00190                                         nu = 0.1 +nPsi +2*dimx +2; 
00191                                         
00192                                 }
00193                                 else
00194                                 {
00195                                         nu=nu0;
00196                                 }
00197                         }
00199 
00200                         vec sample() const;
00201                         vec mean() const;
00202                         vec variance() const;
00203                         void mean_mat ( mat &M, mat&R ) const;
00205                         double evallog_nn ( const vec &val ) const;
00206                         double lognc () const;
00207                         void pow ( double p ) {V*=p;nu*=p;};
00208 
00211 
00212                         ldmat& _V() {return V;}
00213                         const ldmat& _V() const {return V;}
00214                         double& _nu()  {return nu;}
00215                         const double& _nu() const {return nu;}
00217         };
00218 
00227         class eDirich: public eEF
00228         {
00229                 protected:
00231                         vec beta;
00232                 public:
00235 
00236                         eDirich () : eEF ( ) {};
00237                         eDirich ( const eDirich &D0 ) : eEF () {set_parameters ( D0.beta );};
00238                         eDirich ( const vec &beta0 ) {set_parameters ( beta0 );};
00239                         void set_parameters ( const vec &beta0 )
00240                         {
00241                                 beta= beta0;
00242                                 dim = beta.length();
00243                         }
00245 
00246                         vec sample() const {it_error ( "Not implemented" );return vec_1 ( 0.0 );};
00247                         vec mean() const {return beta/sum(beta);};
00248                         vec variance() const {double gamma =sum(beta); return elem_mult ( beta, ( beta+1 ) ) / ( gamma* ( gamma+1 ) );}
00250                         double evallog_nn ( const vec &val ) const
00251                         {
00252                                 double tmp; tmp= ( beta-1 ) *log ( val );               it_assert_debug ( std::isfinite ( tmp ),"Infinite value" );
00253                                 return tmp;
00254                         };
00255                         double lognc () const
00256                         {
00257                                 double tmp;
00258                                 double gam=sum ( beta );
00259                                 double lgb=0.0;
00260                                 for ( int i=0;i<beta.length();i++ ) {lgb+=lgamma ( beta ( i ) );}
00261                                 tmp= lgb-lgamma ( gam );
00262                                 it_assert_debug ( std::isfinite ( tmp ),"Infinite value" );
00263                                 return tmp;
00264                         };
00266                         vec& _beta()  {return beta;}
00268         };
00269 
00271         class multiBM : public BMEF
00272         {
00273                 protected:
00275                         eDirich est;
00277                         vec β
00278                 public:
00280                         multiBM ( ) : BMEF ( ),est ( ),beta ( est._beta() )
00281                         {
00282                                 if ( beta.length() >0 ) {last_lognc=est.lognc();}
00283                                 else{last_lognc=0.0;}
00284                         }
00286                         multiBM ( const multiBM &B ) : BMEF ( B ),est ( B.est ),beta ( est._beta() ) {}
00288                         void set_statistics ( const BM* mB0 ) {const multiBM* mB=dynamic_cast<const multiBM*> ( mB0 ); beta=mB->beta;}
00289                         void bayes ( const vec &dt )
00290                         {
00291                                 if ( frg<1.0 ) {beta*=frg;last_lognc=est.lognc();}
00292                                 beta+=dt;
00293                                 if ( evalll ) {ll=est.lognc()-last_lognc;}
00294                         }
00295                         double logpred ( const vec &dt ) const
00296                         {
00297                                 eDirich pred ( est );
00298                                 vec &beta = pred._beta();
00299 
00300                                 double lll;
00301                                 if ( frg<1.0 )
00302                                         {beta*=frg;lll=pred.lognc();}
00303                                 else
00304                                         if ( evalll ) {lll=last_lognc;}
00305                                         else{lll=pred.lognc();}
00306 
00307                                 beta+=dt;
00308                                 return pred.lognc()-lll;
00309                         }
00310                         void flatten ( const BMEF* B )
00311                         {
00312                                 const multiBM* E=dynamic_cast<const multiBM*> ( B );
00313                                 
00314                                 const vec &Eb=E->beta;
00315                                 beta*= ( sum ( Eb ) /sum ( beta ) );
00316                                 if ( evalll ) {last_lognc=est.lognc();}
00317                         }
00318                         const epdf& posterior() const {return est;};
00319                         const eDirich* _e() const {return &est;};
00320                         void set_parameters ( const vec &beta0 )
00321                         {
00322                                 est.set_parameters ( beta0 );
00323                                 if ( evalll ) {last_lognc=est.lognc();}
00324                         }
00325         };
00326 
00336         class egamma : public eEF
00337         {
00338                 protected:
00340                         vec alpha;
00342                         vec beta;
00343                 public :
00346                         egamma ( ) :eEF ( ), alpha ( 0 ), beta ( 0 ) {};
00347                         egamma ( const vec &a, const vec &b ) {set_parameters ( a, b );};
00348                         void set_parameters ( const vec &a, const vec &b ) {alpha=a,beta=b;dim = alpha.length();};
00350 
00351                         vec sample() const;
00353 
00354                         double evallog ( const vec &val ) const;
00355                         double lognc () const;
00357                         vec& _alpha() {return alpha;}
00358                         vec& _beta() {return beta;}
00359                         vec mean() const {return elem_div ( alpha,beta );}
00360                         vec variance() const {return elem_div ( alpha,elem_mult ( beta,beta ) ); }
00361         };
00362 
00379         class eigamma : public egamma
00380         {
00381                 protected:
00382                 public :
00387 
00388                         vec sample() const {return 1.0/egamma::sample();};
00390                         vec mean() const {return elem_div ( beta,alpha-1 );}
00391                         vec variance() const {vec mea=mean(); return elem_div ( elem_mult ( mea,mea ),alpha-2 );}
00392         };
00393         
00395 
00396 
00397 
00398 
00399 
00400 
00402 
00403 
00404 
00405 
00406 
00407 
00408 
00410 
00411         class euni: public epdf
00412         {
00413                 protected:
00415                         vec low;
00417                         vec high;
00419                         vec distance;
00421                         double nk;
00423                         double lnk;
00424                 public:
00427                         euni ( ) :epdf ( ) {}
00428                         euni ( const vec &low0, const vec &high0 ) {set_parameters ( low0,high0 );}
00429                         void set_parameters ( const vec &low0, const vec &high0 )
00430                         {
00431                                 distance = high0-low0;
00432                                 it_assert_debug ( min ( distance ) >0.0,"bad support" );
00433                                 low = low0;
00434                                 high = high0;
00435                                 nk = prod ( 1.0/distance );
00436                                 lnk = log ( nk );
00437                                 dim = low.length();
00438                         }
00440 
00441                         double eval ( const vec &val ) const  {return nk;}
00442                         double evallog ( const vec &val ) const  {return lnk;}
00443                         vec sample() const
00444                         {
00445                                 vec smp ( dim );
00446 #pragma omp critical
00447                                 UniRNG.sample_vector ( dim ,smp );
00448                                 return low+elem_mult ( distance,smp );
00449                         }
00451                         vec mean() const {return ( high-low ) /2.0;}
00452                         vec variance() const {return ( pow ( high,2 ) +pow ( low,2 ) +elem_mult ( high,low ) ) /3.0;}
00453         };
00454 
00455 
00461         template<class sq_T>
00462         class mlnorm : public mEF
00463         {
00464                 protected:
00466                         enorm<sq_T> epdf;
00467                         mat A;
00468                         vec mu_const;
00469                         vec& _mu; 
00470                 public:
00473                         mlnorm ( ) :mEF (),epdf ( ),A ( ),_mu ( epdf._mu() ) {ep =&epdf; };
00474                         mlnorm ( const  mat &A, const vec &mu0, const sq_T &R ) :epdf ( ),_mu ( epdf._mu() )
00475                         {
00476                                 ep =&epdf; set_parameters ( A,mu0,R );
00477                         };
00479                         void set_parameters ( const  mat &A, const vec &mu0, const sq_T &R );
00482                         void condition ( const vec &cond );
00483 
00485                         vec& _mu_const() {return mu_const;}
00487                         mat& _A() {return A;}
00489                         mat _R() {return epdf._R().to_mat();}
00490 
00491                         template<class sq_M>
00492                         friend std::ostream &operator<< ( std::ostream &os,  mlnorm<sq_M> &ml );
00493         };
00494 
00496         template<class sq_T>
00497         class mgnorm : public mEF
00498         {
00499                 protected:
00501                         enorm<sq_T> epdf;
00502                         vec μ
00503                         fnc* g;
00504                 public:
00506                         mgnorm() :mu ( epdf._mu() ) {ep=&epdf;}
00508                         void set_parameters ( fnc* g0, const sq_T &R0 ) {g=g0; epdf.set_parameters ( zeros ( g->dimension() ), R0 );}
00509                         void condition ( const vec &cond ) {mu=g->eval ( cond );};
00510         };
00511 
00519         class mlstudent : public mlnorm<ldmat>
00520         {
00521                 protected:
00522                         ldmat Lambda;
00523                         ldmat &_R;
00524                         ldmat Re;
00525                 public:
00526                         mlstudent ( ) :mlnorm<ldmat> (),
00527                                         Lambda (),      _R ( epdf._R() ) {}
00528                         void set_parameters ( const mat &A0, const vec &mu0, const ldmat &R0, const ldmat& Lambda0 )
00529                         {
00530                                 it_assert_debug ( A0.rows() ==mu0.length(),"" );
00531                                 it_assert_debug ( R0.rows() ==A0.rows(),"" );
00532 
00533                                 epdf.set_parameters ( mu0,Lambda ); 
00534                                 A = A0;
00535                                 mu_const = mu0;
00536                                 Re=R0;
00537                                 Lambda = Lambda0;
00538                         }
00539                         void condition ( const vec &cond )
00540                         {
00541                                 _mu = A*cond + mu_const;
00542                                 double zeta;
00543                                 
00544                                 if ( ( cond.length() +1 ) ==Lambda.rows() )
00545                                 {
00546                                         zeta = Lambda.invqform ( concat ( cond, vec_1 ( 1.0 ) ) );
00547                                 }
00548                                 else
00549                                 {
00550                                         zeta = Lambda.invqform ( cond );
00551                                 }
00552                                 _R = Re;
00553                                 _R*= ( 1+zeta );
00554                         };
00555 
00556         };
00566         class mgamma : public mEF
00567         {
00568                 protected:
00570                         egamma epdf;
00572                         double k;
00574                         vec &_beta;
00575 
00576                 public:
00578                         mgamma ( ) : mEF ( ), epdf (), _beta ( epdf._beta() ) {ep=&epdf;};
00580                         void set_parameters ( double k, const vec &beta0 );
00581                         void condition ( const vec &val ) {_beta=k/val;};
00582         };
00583 
00593         class migamma : public mEF
00594         {
00595                 protected:
00597                         eigamma epdf;
00599                         double k;
00601                         vec &_alpha;
00603                         vec &_beta;
00604 
00605                 public:
00608                         migamma ( ) : mEF (), epdf ( ), _alpha ( epdf._alpha() ), _beta ( epdf._beta() ) {ep=&epdf;};
00609                         migamma ( const migamma &m ) : mEF (), epdf ( m.epdf ), _alpha ( epdf._alpha() ), _beta ( epdf._beta() ) {ep=&epdf;};
00611 
00613                         void set_parameters ( int len, double k0 )
00614                         {
00615                                 k=k0;
00616                                 epdf.set_parameters ( ( 1.0/ ( k*k ) +2.0 ) *ones ( len ) , ones ( len )  );
00617                                 dimc = dimension();
00618                         };
00619                         void condition ( const vec &val )
00620                         {
00621                                 _beta=elem_mult ( val, ( _alpha-1.0 ) );
00622                         };
00623         };
00624 
00636         class mgamma_fix : public mgamma
00637         {
00638                 protected:
00640                         double l;
00642                         vec refl;
00643                 public:
00645                         mgamma_fix ( ) : mgamma ( ),refl () {};
00647                         void set_parameters ( double k0 , vec ref0, double l0 )
00648                         {
00649                                 mgamma::set_parameters ( k0, ref0 );
00650                                 refl=pow ( ref0,1.0-l0 );l=l0;
00651                                 dimc=dimension();
00652                         };
00653 
00654                         void condition ( const vec &val ) {vec mean=elem_mult ( refl,pow ( val,l ) ); _beta=k/mean;};
00655         };
00656 
00657 
00670         class migamma_ref : public migamma
00671         {
00672                 protected:
00674                         double l;
00676                         vec refl;
00677                 public:
00679                         migamma_ref ( ) : migamma (),refl ( ) {};
00681                         void set_parameters ( double k0 , vec ref0, double l0 )
00682                         {
00683                                 migamma::set_parameters ( ref0.length(), k0 );
00684                                 refl=pow ( ref0,1.0-l0 );
00685                                 l=l0;
00686                                 dimc = dimension();
00687                         };
00688 
00689                         void condition ( const vec &val )
00690                         {
00691                                 vec mean=elem_mult ( refl,pow ( val,l ) );
00692                                 migamma::condition ( mean );
00693                         };
00694         };
00695 
00705         class elognorm: public enorm<ldmat>
00706         {
00707                 public:
00708                         vec sample() const {return exp ( enorm<ldmat>::sample() );};
00709                         vec mean() const {vec var=enorm<ldmat>::variance();return exp ( mu - 0.5*var );};
00710 
00711         };
00712 
00724         class mlognorm : public mpdf
00725         {
00726                 protected:
00727                         elognorm eno;
00729                         double sig2;
00731                         vec μ
00732                 public:
00734                         mlognorm ( ) : eno (), mu ( eno._mu() ) {ep=&eno;};
00736                         void set_parameters ( int size, double k )
00737                         {
00738                                 sig2 = 0.5*log ( k*k+1 );
00739                                 eno.set_parameters ( zeros ( size ),2*sig2*eye ( size ) );
00740 
00741                                 dimc = size;
00742                         };
00743 
00744                         void condition ( const vec &val )
00745                         {
00746                                 mu=log ( val )-sig2;
00747                         };
00748         };
00749 
00753         class eWishartCh : public epdf
00754         {
00755                 protected:
00757                         chmat Y;
00759                         int p;
00761                         double delta;
00762                 public:
00763                         void set_parameters ( const mat &Y0, const double delta0 ) {Y=chmat ( Y0 );delta=delta0; p=Y.rows(); dim = p*p; }
00764                         mat sample_mat() const
00765                         {
00766                                 mat X=zeros ( p,p );
00767 
00768                                 
00769                                 for ( int i=0;i<p;i++ )
00770                                 {
00771                                         GamRNG.setup ( 0.5* ( delta-i ) , 0.5 ); 
00772 #pragma omp critical
00773                                         X ( i,i ) =sqrt ( GamRNG() );
00774                                 }
00775                                 
00776                                 for ( int i=0;i<p;i++ )
00777                                 {
00778                                         for ( int j=i+1;j<p;j++ )
00779                                         {
00780 #pragma omp critical
00781                                                 X ( i,j ) =NorRNG.sample();
00782                                         }
00783                                 }
00784                                 return X*Y._Ch();
00785                         }
00786                         vec sample () const
00787                         {
00788                                 return vec ( sample_mat()._data(),p*p );
00789                         }
00791                         void setY ( const mat &Ch0 ) {copy_vector ( dim,Ch0._data(), Y._Ch()._data() );}
00793                         void _setY ( const vec &ch0 ) {copy_vector ( dim, ch0._data(), Y._Ch()._data() ); }
00795                         const chmat& getY()const {return Y;}
00796         };
00797 
00798         class eiWishartCh: public epdf
00799         {
00800                 protected:
00801                         eWishartCh W;
00802                         int p;
00803                         double delta;
00804                 public:
00805                         void set_parameters ( const mat &Y0, const double delta0) {
00806                                 delta = delta0;
00807                                 W.set_parameters ( inv ( Y0 ),delta0 ); 
00808                                 dim = W.dimension(); p=Y0.rows();
00809                         }
00810                         vec sample() const {mat iCh; iCh=inv ( W.sample_mat() ); return vec ( iCh._data(),dim );}
00811                         void _setY ( const vec &y0 )
00812                         {
00813                                 mat Ch ( p,p );
00814                                 mat iCh ( p,p );
00815                                 copy_vector ( dim, y0._data(), Ch._data() );
00816                                 
00817                                 iCh=inv ( Ch );
00818                                 W.setY ( iCh );
00819                         }
00820                         virtual double evallog ( const vec &val ) const {
00821                                 chmat X(p);
00822                                 const chmat& Y=W.getY();
00823                                  
00824                                 copy_vector(p*p,val._data(),X._Ch()._data());
00825                                 chmat iX(p);X.inv(iX);
00826                                 
00827 
00828                                 mat M=Y.to_mat()*iX.to_mat();
00829                                 
00830                                 double log1 = 0.5*p*(2*Y.logdet())-0.5*(delta+p+1)*(2*X.logdet())-0.5*trace(M); 
00831                                 
00832                                 
00833 
00834 
00835 
00836 
00837 
00838 
00839 
00840                                 return log1;                            
00841                         };
00842                         
00843         };
00844 
00845         class rwiWishartCh : public mpdf
00846         {
00847                 protected:
00848                         eiWishartCh eiW;
00850                         double sqd;
00851                         
00852                         vec refl;
00853                         double l;
00854                         int p;
00855                 public:
00856                         void set_parameters ( int p0, double k, vec ref0, double l0  )
00857                         {
00858                                 p=p0;
00859                                 double delta = 2/(k*k)+p+3;
00860                                 sqd=sqrt ( delta-p-1 );
00861                                 l=l0;
00862                                 refl=pow(ref0,1-l);
00863                                 
00864                                 eiW.set_parameters ( eye ( p ),delta );
00865                                 ep=&eiW;
00866                                 dimc=eiW.dimension();
00867                         }
00868                         void condition ( const vec &c ) {
00869                                 vec z=c;
00870                                 int ri=0;
00871                                 for(int i=0;i<p*p;i+=(p+1)){
00872                                         z(i) = pow(z(i),l)*refl(ri);
00873                                         ri++;
00874                                 }
00875 
00876                                 eiW._setY ( sqd*z );
00877                         }
00878         };
00879 
00881         enum RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
00887         class eEmp: public epdf
00888         {
00889                 protected :
00891                         int n;
00893                         vec w;
00895                         Array<vec> samples;
00896                 public:
00899                         eEmp ( ) :epdf ( ),w ( ),samples ( ) {};
00900                         eEmp ( const eEmp &e ) : epdf ( e ), w ( e.w ), samples ( e.samples ) {};
00902 
00904                         void set_statistics ( const vec &w0, const epdf* pdf0 );
00906                         void set_statistics ( const epdf* pdf0 , int n ) {set_statistics ( ones ( n ) /n,pdf0 );};
00908                         void set_samples ( const epdf* pdf0 );
00910                         void set_parameters ( int n0, bool copy=true ) {n=n0; w.set_size ( n0,copy );samples.set_size ( n0,copy );};
00912                         vec& _w()  {return w;};
00914                         const vec& _w() const {return w;};
00916                         Array<vec>& _samples() {return samples;};
00918                         const Array<vec>& _samples() const {return samples;};
00920                         ivec resample ( RESAMPLING_METHOD method=SYSTEMATIC );
00922                         vec sample() const {it_error ( "Not implemented" );return 0;}
00924                         double evallog ( const vec &val ) const {it_error ( "Not implemented" );return 0.0;}
00925                         vec mean() const
00926                         {
00927                                 vec pom=zeros ( dim );
00928                                 for ( int i=0;i<n;i++ ) {pom+=samples ( i ) *w ( i );}
00929                                 return pom;
00930                         }
00931                         vec variance() const
00932                         {
00933                                 vec pom=zeros ( dim );
00934                                 for ( int i=0;i<n;i++ ) {pom+=pow ( samples ( i ),2 ) *w ( i );}
00935                                 return pom-pow ( mean(),2 );
00936                         }
00938                         void qbounds ( vec &lb, vec &ub, double perc=0.95 ) const
00939                         {
00940                                 
00941                                 lb.set_size ( dim );
00942                                 ub.set_size ( dim );
00943                                 lb = std::numeric_limits<double>::infinity();
00944                                 ub = -std::numeric_limits<double>::infinity();
00945                                 int j;
00946                                 for ( int i=0;i<n;i++ )
00947                                 {
00948                                         for ( j=0;j<dim; j++ )
00949                                         {
00950                                                 if ( samples ( i ) ( j ) <lb ( j ) ) {lb ( j ) =samples ( i ) ( j );}
00951                                                 if ( samples ( i ) ( j ) >ub ( j ) ) {ub ( j ) =samples ( i ) ( j );}
00952                                         }
00953                                 }
00954                         }
00955         };
00956 
00957 
00959 
00960         template<class sq_T>
00961         void enorm<sq_T>::set_parameters ( const vec &mu0, const sq_T &R0 )
00962         {
00963 
00964                 mu = mu0;
00965                 R = R0;
00966                 dim = mu0.length();
00967         };
00968 
00969         template<class sq_T>
00970         void enorm<sq_T>::dupdate ( mat &v, double nu )
00971         {
00972                 
00973         };
00974 
00975 
00976 
00977 
00978 
00979 
00980         template<class sq_T>
00981         vec enorm<sq_T>::sample() const
00982         {
00983                 vec x ( dim );
00984 #pragma omp critical
00985                 NorRNG.sample_vector ( dim,x );
00986                 vec smp = R.sqrt_mult ( x );
00987 
00988                 smp += mu;
00989                 return smp;
00990         };
00991 
00992         template<class sq_T>
00993         mat enorm<sq_T>::sample ( int N ) const
00994         {
00995                 mat X ( dim,N );
00996                 vec x ( dim );
00997                 vec pom;
00998                 int i;
00999 
01000                 for ( i=0;i<N;i++ )
01001                 {
01002 #pragma omp critical
01003                         NorRNG.sample_vector ( dim,x );
01004                         pom = R.sqrt_mult ( x );
01005                         pom +=mu;
01006                         X.set_col ( i, pom );
01007                 }
01008 
01009                 return X;
01010         };
01011 
01012 
01013 
01014 
01015 
01016 
01017 
01018 
01019 
01020         template<class sq_T>
01021         double enorm<sq_T>::evallog_nn ( const vec &val ) const
01022         {
01023                 
01024                 double tmp=-0.5* ( R.invqform ( mu-val ) );
01025                 return  tmp;
01026         };
01027 
01028         template<class sq_T>
01029         inline double enorm<sq_T>::lognc () const
01030         {
01031                 
01032                 double tmp=0.5* ( R.cols() * 1.83787706640935 +R.logdet() );
01033                 return tmp;
01034         };
01035 
01036         template<class sq_T>
01037         void mlnorm<sq_T>::set_parameters ( const mat &A0, const vec &mu0, const sq_T &R0 )
01038         {
01039                 it_assert_debug ( A0.rows() ==mu0.length(),"" );
01040                 it_assert_debug ( A0.rows() ==R0.rows(),"" );
01041 
01042                 epdf.set_parameters ( zeros ( A0.rows() ),R0 );
01043                 A = A0;
01044                 mu_const = mu0;
01045                 dimc=A0.cols();
01046         }
01047 
01048 
01049 
01050 
01051 
01052 
01053 
01054 
01055 
01056 
01057 
01058 
01059 
01060 
01061 
01062 
01063 
01064 
01065 
01066 
01067 
01068 
01069 
01070 
01071 
01072 
01073         template<class sq_T>
01074         void mlnorm<sq_T>::condition ( const vec &cond )
01075         {
01076                 _mu = A*cond + mu_const;
01077 
01078         }
01079 
01080         template<class sq_T>
01081         enorm<sq_T>* enorm<sq_T>::marginal ( const RV &rvn ) const
01082         {
01083                 it_assert_debug ( isnamed(), "rv description is not assigned" );
01084                 ivec irvn = rvn.dataind ( rv );
01085 
01086                 sq_T Rn ( R,irvn ); 
01087 
01088                 enorm<sq_T>* tmp = new enorm<sq_T>;
01089                 tmp->set_rv ( rvn );
01090                 tmp->set_parameters ( mu ( irvn ), Rn );
01091                 return tmp;
01092         }
01093 
01094         template<class sq_T>
01095         mpdf* enorm<sq_T>::condition ( const RV &rvn ) const
01096         {
01097 
01098                 it_assert_debug ( isnamed(),"rvs are not assigned" );
01099 
01100                 RV rvc = rv.subt ( rvn );
01101                 it_assert_debug ( ( rvc._dsize() +rvn._dsize() ==rv._dsize() ),"wrong rvn" );
01102                 
01103                 ivec irvn = rvn.dataind ( rv );
01104                 ivec irvc = rvc.dataind ( rv );
01105                 ivec perm=concat ( irvn , irvc );
01106                 sq_T Rn ( R,perm );
01107 
01108                 
01109                 mat S=Rn.to_mat();
01110                 
01111                 int n=rvn._dsize()-1;
01112                 int end=R.rows()-1;
01113                 mat S11 = S.get ( 0,n, 0, n );
01114                 mat S12 = S.get ( 0, n , rvn._dsize(), end );
01115                 mat S22 = S.get ( rvn._dsize(), end, rvn._dsize(), end );
01116 
01117                 vec mu1 = mu ( irvn );
01118                 vec mu2 = mu ( irvc );
01119                 mat A=S12*inv ( S22 );
01120                 sq_T R_n ( S11 - A *S12.T() );
01121 
01122                 mlnorm<sq_T>* tmp=new mlnorm<sq_T> ( );
01123                 tmp->set_rv ( rvn ); tmp->set_rvc ( rvc );
01124                 tmp->set_parameters ( A,mu1-A*mu2,R_n );
01125                 return tmp;
01126         }
01127 
01129 
01130         template<class sq_T>
01131         std::ostream &operator<< ( std::ostream &os,  mlnorm<sq_T> &ml )
01132         {
01133                 os << "A:"<< ml.A<<endl;
01134                 os << "mu:"<< ml.mu_const<<endl;
01135                 os << "R:" << ml.epdf._R().to_mat() <<endl;
01136                 return os;
01137         };
01138 
01139 }
01140 #endif //EF_H