#include <ekf_obj.h>
| Public Member Functions | |
| void | init_ekf (double Tv) | 
| void | ekf (double ux, double uy, double isxd, double isyd) | 
| void | prediction (int *ux) | 
| void | correction (void) | 
| void | update_psi (void) | 
| EKFfixed () | |
| Default constructor. | |
| void | bayes (const vec &dt) | 
| Here dt = [yt;ut] of appropriate dimensions. | |
| epdf & | posterior () | 
| dummy! | |
| void | condition (const vec &Q0) | 
| Substitute valforrvc. | |
| Constructors | |
| virtual BM * | _copy_ () const | 
| Mathematical operations | |
| virtual void | bayesB (const mat &Dt) | 
| Batch Bayes rule (columns of Dt are observations). | |
| virtual double | logpred (const vec &dt) const | 
| vec | logpred_m (const mat &dt) const | 
| Matrix version of logpred. | |
| virtual epdf * | epredictor () const | 
| Constructs a predictive density  . | |
| virtual mpdf * | predictor () const | 
| Constructs a conditional density 1-step ahead predictor. | |
| Access to attributes | |
| const RV & | _drv () const | 
| void | set_drv (const RV &rv) | 
| void | set_rv (const RV &rv) | 
| double | _ll () const | 
| void | set_evalll (bool evl0) | 
| virtual const epdf & | posterior () const =0 | 
| virtual const epdf * | _e () const =0 | 
| Public Attributes | |
| int | Q [16] | 
| int | R [4] | 
| int | x_est [4] | 
| int | x_pred [4] | 
| int | P_pred [16] | 
| int | P_est [16] | 
| int | Y_mes [2] | 
| int | ukalm [2] | 
| int | Kalm [8] | 
| int | PSI [16] | 
| int | temp15a [16] | 
| int | cA | 
| int | cB | 
| int | cC | 
| int | cG | 
| int | cH | 
| long | temp30a [4] | 
| enorm< fsqmat > | E | 
| mat | Ry | 
| Protected Attributes | |
| RV | drv | 
| Random variable of the data (optional). | |
| double | ll | 
| Logarithm of marginalized data likelihood. | |
| bool | evalll | 
| If true, the filter will compute likelihood of the data record and store it in ll. Set to false if you want to save computational time. | |
| Extension to conditional BM | |
| This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed | |
| RV | rvc | 
| Name of extension variable. | |
| const RV & | _rvc () const | 
| access function | |
| Logging of results | |
| ivec | LIDs | 
| IDs of storages in loggers. | |
| bool | opt_L_bounds | 
| Option for logging bounds. | |
| void | set_options (const string &opt) | 
| Set boolean options from a string. | |
| virtual void | log_add (logger &L, const string &name="") | 
| Add all logged variables to a logger. | |
| virtual void | logit (logger &L) | 
An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean.
| virtual BM* bdm::BM::_copy_ | ( | ) | const  [inline, virtual, inherited] | 
Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:
BM* _copy_() const {return new BM(*this);}
Reimplemented in bdm::ARX, bdm::KalmanCh, bdm::EKF< sq_T >, bdm::EKFCh, and bdm::BMEF.
| virtual double bdm::BM::logpred | ( | const vec & | dt | ) | const  [inline, virtual, inherited] | 
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
Referenced by bdm::BM::logpred_m().
 1.5.8
 1.5.8