The software is based upon original FastICA for Matlab from A. Hyvarinen. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks, 10(3), pp. 626-634, 1999. More...
#include <fastica.h>
Public Member Functions | |
Fast_ICA (mat ma_mixed_sig) | |
Constructor. | |
void | separate (void) |
Explicit launch of main FastICA function. | |
void | set_approach (int in_approach) |
Set approach : FICA_APPROACH_DEFL or FICA_APPROACH_SYMM (default). | |
void | set_nrof_independent_components (int in_nrIC) |
Set number of independent components to separate. | |
void | set_non_linearity (int in_g) |
Set non-linearity. | |
void | set_fine_tune (bool in_finetune) |
Set fine tuning. | |
void | set_a1 (double fl_a1) |
Set parameter. | |
void | set_a2 (double fl_a2) |
Set parameter. | |
void | set_mu (double fl_mu) |
Set parameter. | |
void | set_epsilon (double fl_epsilon) |
Set convergence parameter . | |
void | set_sample_size (double fl_sampleSize) |
Set sample size. | |
void | set_stabilization (bool in_stabilization) |
Set stabilization mode true or off. | |
void | set_max_num_iterations (int in_maxNumIterations) |
Set maximum number of iterations. | |
void | set_max_fine_tune (int in_maxFineTune) |
Set maximum number of iterations for fine tuning. | |
void | set_first_eig (int in_firstEig) |
Set first eigenvalue index to take into account. | |
void | set_last_eig (int in_lastEig) |
Set last eigenvalue index to take into account. | |
void | set_pca_only (bool in_PCAonly) |
If true, only perform Principal Component Analysis (default = false). | |
void | set_init_guess (mat ma_initGuess) |
Set initial guess matrix instead of random (default). | |
mat | get_mixing_matrix () |
Get mixing matrix. | |
mat | get_separating_matrix () |
Get separating matrix. | |
mat | get_independent_components () |
Get separated signals. | |
int | get_nrof_independent_components () |
Get number of independent components. | |
mat | get_principal_eigenvectors () |
Get nrIC first columns of the de-whitening matrix. | |
mat | get_whitening_matrix () |
Get the whitening matrix. | |
mat | get_dewhitening_matrix () |
Get the de-whitening matrix. | |
mat | get_white_sig () |
Get whitened signals. |
The software is based upon original FastICA for Matlab from A. Hyvarinen. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks, 10(3), pp. 626-634, 1999.
Example:
FastICA fastica(sources); fastica.set_nrof_independent_components(sources.rows()); fastica.set_non_linearity( FICA_NONLIN_TANH ); fastica.set_approach( FICA_APPROACH_DEFL ); fastica.separate(); mat ICs = fastica.get_independent_components();
itpp::Fast_ICA::Fast_ICA | ( | mat | ma_mixed_sig | ) |
Constructor.
Construct a Fast_ICA object with mixed signals to separate.
ma_mixed_sig | (Input) Mixed signals to separate |
References FICA_APPROACH_SYMM, FICA_INIT_RAND, and FICA_NONLIN_POW3.
mat itpp::Fast_ICA::get_dewhitening_matrix | ( | ) |
Get the de-whitening matrix.
Return dewhitening matrix.
mat itpp::Fast_ICA::get_independent_components | ( | ) |
Get separated signals.
Return separated signals (Independent Components).
References it_warning, and itpp::zeros().
mat itpp::Fast_ICA::get_mixing_matrix | ( | ) |
Get mixing matrix.
Return mixing matrix.
References it_warning, and itpp::zeros().
int itpp::Fast_ICA::get_nrof_independent_components | ( | ) |
Get number of independent components.
Return number of ICs.
mat itpp::Fast_ICA::get_principal_eigenvectors | ( | ) |
Get nrIC first columns of the de-whitening matrix.
Return principal eigenvectors.
mat itpp::Fast_ICA::get_separating_matrix | ( | ) |
Get separating matrix.
Return separating matrix.
References it_warning, and itpp::zeros().
mat itpp::Fast_ICA::get_white_sig | ( | ) |
Get whitened signals.
Return whitened signals.
mat itpp::Fast_ICA::get_whitening_matrix | ( | ) |
Get the whitening matrix.
Return whitening matrix.
void itpp::Fast_ICA::separate | ( | void | ) |
Explicit launch of main FastICA function.
Explicit launch of the Fast_ICA algorithm.
References itpp::diag(), FICA_INIT_RAND, itpp::max_index(), itpp::to_ivec(), and itpp::zeros().
void itpp::Fast_ICA::set_a1 | ( | double | fl_a1 | ) |
Set parameter.
Set internal parameter of Fast_ICA (See reference paper).
fl_a1 | (Input) Parameter from reference paper |
void itpp::Fast_ICA::set_a2 | ( | double | fl_a2 | ) |
Set parameter.
Set internal parameter of Fast_ICA (See reference paper).
fl_a2 | (Input) Parameter from reference paper |
void itpp::Fast_ICA::set_approach | ( | int | in_approach | ) |
Set approach : FICA_APPROACH_DEFL or FICA_APPROACH_SYMM (default).
Set approach to use : FICA_APPROACH_SYMM (symmetric) or FICA_APPROACH_DEFL (deflation). The symmetric approach computes all ICs at a time, whereas the deflation approach computes them one by one.
in_approach | (Input) Type of approach to use |
References FICA_APPROACH_DEFL.
void itpp::Fast_ICA::set_epsilon | ( | double | fl_epsilon | ) |
Set convergence parameter .
Set parameter for convergence precision.
fl_epsilon | (Input) is convergence precision |
void itpp::Fast_ICA::set_fine_tune | ( | bool | in_finetune | ) |
Set fine tuning.
Set fine tuning true or false.
in_finetune | (Input) Boolean (true or false) |
void itpp::Fast_ICA::set_first_eig | ( | int | in_firstEig | ) |
Set first eigenvalue index to take into account.
Set first eigenvalue index to take into account.
in_firstEig | (Input) First eigenvalue index to take into account |
void itpp::Fast_ICA::set_init_guess | ( | mat | ma_initGuess | ) |
Set initial guess matrix instead of random (default).
Set initial matrix instead of random matrix.
ma_initGuess | (Input) Initial guess matrix |
References FICA_INIT_GUESS.
void itpp::Fast_ICA::set_last_eig | ( | int | in_lastEig | ) |
Set last eigenvalue index to take into account.
Set last eigenvalue index to take into account.
in_lastEig | (Input) Last eigenvalue index to take into account |
void itpp::Fast_ICA::set_max_fine_tune | ( | int | in_maxFineTune | ) |
Set maximum number of iterations for fine tuning.
Set maximum numberr of iterations for fine tuning.
in_maxFineTune | (Input) Maximum number of iterations for fine tuning stage |
void itpp::Fast_ICA::set_max_num_iterations | ( | int | in_maxNumIterations | ) |
Set maximum number of iterations.
Set maximum number of iterations for Fast_ICA.
in_maxNumIterations | (Input) Maximum number of iterations to go through |
void itpp::Fast_ICA::set_mu | ( | double | fl_mu | ) |
Set parameter.
Set internal parameter of Fast_ICA (See reference paper).
fl_mu | (Input) Parameter from reference paper |
void itpp::Fast_ICA::set_non_linearity | ( | int | in_g | ) |
Set non-linearity.
Set non-linearity to use : FICA_NONLIN_POW3 (default), FICA_NONLIN_TANH, FICA_NONLIN_GAUSS, FICA_NONLIN_SKEW
in_g | (Input) Non-linearity. Can be selected from FICA_NONLIN_POW3, FICA_NONLIN_TANH, FICA_NONLIN_GAUSS or FICA_NONLIN_SKEW |
void itpp::Fast_ICA::set_nrof_independent_components | ( | int | in_nrIC | ) |
Set number of independent components to separate.
Set the number of ICs to compute.
in_nrIC | (Input) Number of ICs to compute |
void itpp::Fast_ICA::set_pca_only | ( | bool | in_PCAonly | ) |
If true, only perform Principal Component Analysis (default = false).
Wether to perform PCA only or PCA+ICA.
in_PCAonly | (Input) True = PCA only, false = PCA+ICA (default) |
void itpp::Fast_ICA::set_sample_size | ( | double | fl_sampleSize | ) |
Set sample size.
Set the percentage of samples to take into account at every iteration.
fl_sampleSize | (Input) Percentage of data to take into account at every iteration |
void itpp::Fast_ICA::set_stabilization | ( | bool | in_stabilization | ) |
Set stabilization mode true or off.
Set stabilization mode.
in_stabilization | (Input) Set stabilization true or false |