Miscellaneous Statistics Functions
[Statistics Module]


Classes

class  itpp::Stat
 A class for sampling a signal and calculating statistics. More...

Functions

double itpp::mean (const vec &v)
 The mean value.
std::complex< double > itpp::mean (const cvec &v)
 The mean value.
double itpp::mean (const svec &v)
 The mean value.
double itpp::mean (const ivec &v)
 The mean value.
double itpp::mean (const mat &m)
 The mean value.
std::complex< double > itpp::mean (const cmat &m)
 The mean value.
double itpp::mean (const smat &m)
 The mean value.
double itpp::mean (const imat &m)
 The mean value.
template<class T >
double itpp::geometric_mean (const Vec< T > &v)
 The geometric mean of a vector.
template<class T >
double itpp::geometric_mean (const Mat< T > &m)
 The geometric mean of a matrix.
template<class T >
double itpp::median (const Vec< T > &v)
 The median.
double itpp::norm (const cvec &v)
 Calculate the 2-norm: norm(v)=sqrt(sum(abs(v).^2)).
template<class T >
double itpp::norm (const Vec< T > &v)
 Calculate the 2-norm: norm(v)=sqrt(sum(abs(v).^2)).
double itpp::norm (const cvec &v, int p)
 Calculate the p-norm: norm(v,p)=sum(abs(v).^2)^(1/p).
template<class T >
double itpp::norm (const Vec< T > &v, int p)
 Calculate the p-norm: norm(v,p)=sum(abs(v).^2)^(1/p).
double itpp::norm (const cvec &v, const std::string &s)
 Calculate the Frobenius norm for s = "fro" (equal to 2-norm).
template<class T >
double itpp::norm (const Vec< T > &v, const std::string &s)
 Calculate the Frobenius norm for s = "fro" (equal to 2-norm).
double itpp::norm (const mat &m, int p)
double itpp::norm (const cmat &m, int p)
double itpp::norm (const mat &m, const std::string &s)
 Calculate the Frobenius norm of a matrix for s = "fro".
double itpp::norm (const cmat &m, const std::string &s)
 Calculate the Frobenius norm of a matrix for s = "fro".
double itpp::variance (const cvec &v)
 The variance of the elements in the vector. Normalized with N-1 to be unbiased.
template<class T >
double itpp::variance (const Vec< T > &v)
 The variance of the elements in the vector. Normalized with N-1 to be unbiased.
template<class T >
double itpp::energy (const Vec< T > &v)
 Calculate the energy: squared 2-norm. energy(v)=sum(abs(v).^2).
bool itpp::within_tolerance (double x, double xref, double tol=1e-14)
 Return true if the input value x is within the tolerance tol of the reference value xref.
bool itpp::within_tolerance (std::complex< double > x, std::complex< double > xref, double tol=1e-14)
 Return true if the input value x is within the tolerance tol of the reference value xref.
bool itpp::within_tolerance (const vec &x, const vec &xref, double tol=1e-14)
 Return true if the input vector x is elementwise within the tolerance tol of the reference vector xref.
bool itpp::within_tolerance (const cvec &x, const cvec &xref, double tol=1e-14)
 Return true if the input vector x is elementwise within the tolerance tol of the reference vector xref.
bool itpp::within_tolerance (const mat &X, const mat &Xref, double tol=1e-14)
 Return true if the input matrix X is elementwise within the tolerance tol of the reference matrix Xref.
bool itpp::within_tolerance (const cmat &X, const cmat &Xref, double tol=1e-14)
 Return true if the input matrix X is elementwise within the tolerance tol of the reference matrix Xref.
double itpp::moment (const vec &x, const int r)
 Calculate the central moment of vector x.
double itpp::skewness (const vec &x)
 Calculate the skewness excess of the input vector x.
double itpp::kurtosisexcess (const vec &x)
 Calculate the kurtosis excess of the input vector x.
double itpp::kurtosis (const vec &x)
 Calculate the kurtosis of the input vector x.

Function Documentation

double itpp::kurtosis ( const vec x  )  [inline]

Calculate the kurtosis of the input vector x.

The kurtosis is a measure of peakedness of a distribution. The kurtosis is defined as

\[ \gamma_2 = \frac{\mathrm{E}[x-\mu]^4}{\sigma^4} \]

where $\mu$ is the mean and $\sigma$ the standard deviation. For a Gaussian variable, the kurtusis is 3.

See also the definition of kurtosisexcess.

References itpp::kurtosisexcess().

double itpp::kurtosisexcess ( const vec x  ) 

Calculate the kurtosis excess of the input vector x.

The kurtosis excess is a measure of peakedness of a distribution. The kurtosis excess is defined as

\[ \gamma_2 = \frac{\mathrm{E}[x-\mu]^4}{\sigma^4} - 3 \]

where $\mu$ is the mean and $\sigma$ the standard deviation.

The kurtosis excess is estimated as

\[ \gamma_2 = \frac{k_4}{{k_2}^2} \]

where

\[ k_2 = \frac{n}{n-1} m_2 \]

and

\[ k_4 = \frac{n^2 [(n+1)m_4 - 3(n-1){m_2}^2]}{(n-1)(n-2)(n-3)} \]

Here $m_2$ is the sample variance and $m_4$ is the 4th sample central moment.

References itpp::moment(), and itpp::variance().

Referenced by itpp::kurtosis().

double itpp::moment ( const vec x,
const int  r 
)

Calculate the central moment of vector x.

The $r$th sample central moment of the samples in the vector $ \mathbf{x} $ is defined as

\[ m_r = \mathrm{E}[x-\mu]^r = \frac{1}{n} \sum_{i=0}^{n-1} (x_i - \mu)^r \]

where $\mu$ is the sample mean.

References itpp::mean(), and itpp::pow().

Referenced by itpp::kurtosisexcess(), and itpp::skewness().

double itpp::norm ( const cmat m,
int  p = 2 
)

Calculate the p-norm of a complex matrix

p = 1: max(svd(m)) p = 2: max(sum(abs(X)))

Default if no p is given is the 2-norm

References itpp::abs(), it_assert, itpp::max(), itpp::sum(), and itpp::svd().

double itpp::norm ( const mat m,
int  p = 2 
)

Calculate the p-norm of a real matrix

p = 1: max(svd(m)) p = 2: max(sum(abs(X)))

Default if no p is given is the 2-norm

References itpp::abs(), it_assert, itpp::max(), itpp::sum(), and itpp::svd().

double itpp::skewness ( const vec x  ) 

Calculate the skewness excess of the input vector x.

The skewness is a measure of the degree of asymmetry of distribution. Negative skewness means that the distribution is spread more to the left of the mean than to the right, and vice versa if the skewness is positive.

The skewness of the samples in the vector $ \mathbf{x} $ is

\[ \gamma_1 = \frac{\mathrm{E}[x-\mu]^3}{\sigma^3} \]

where $\mu$ is the mean and $\sigma$ the standard deviation.

The skewness is estimated as

\[ \gamma_1 = \frac{k_3}{{k_2}^{3/2}} \]

where

\[ k_2 = \frac{n}{n-1} m_2 \]

and

\[ k_3 = \frac{n^2}{(n-1)(n-2)} m_3 \]

Here $m_2$ is the sample variance and $m_3$ is the 3rd sample central moment.

References itpp::moment(), itpp::pow(), and itpp::variance().


Generated on Tue Jun 2 10:02:14 2009 for mixpp by  doxygen 1.5.8