Functions | |
double | itpp::quad (double(*f)(double), double a, double b, double tol) |
double | itpp::quadl (double(*f)(double), double a, double b, double tol) |
double itpp::quad | ( | double(*)(double) | f, | |
double | a, | |||
double | b, | |||
double | tol = std::numeric_limits< double >::epsilon() | |||
) |
1-dimensional numerical Simpson quadrature integration
Calculate the 1-dimensional integral
Uses an adaptive Simpson quadrature method. See [Gander] for more details. The integrand is specified as a function
double f(double)
Example:
#include "itpp/itbase.h" double f(const double x) { return x*log(x); } int main() { double res = quad( f, 1.5, 3.5); cout << "res = " << res << endl; return 0; }
References:
[Gander] Gander, W. and W. Gautschi, "Adaptive Quadrature - Revisited", BIT, Vol. 40, 2000, pp. 84-101. This document is also available at http://www.inf.ethz.ch/personal/gander.
References itpp::sum().
double itpp::quadl | ( | double(*)(double) | f, | |
double | a, | |||
double | b, | |||
double | tol = std::numeric_limits< double >::epsilon() | |||
) |
1-dimensional numerical adaptive Lobatto quadrature integration
Calculate the 1-dimensional integral
Uses an adaptive Lobatto quadrature method. See [Gander] for more details. The integrand is specified as a function
double f(double)
Example:
#include "itpp/itbase.h" double f(const double x) { return x*log(x); } int main() { double res = quadl( f, 1.5, 3.5); cout << "res = " << res << endl; return 0; }
References:
[Gander] Gander, W. and W. Gautschi, "Adaptive Quadrature - Revisited", BIT, Vol. 40, 2000, pp. 84-101. This document is also available at http:// www.inf.ethz.ch/personal/gander.
References itpp::abs(), itpp::sign(), and itpp::sqrt().