00001 
00013 #ifndef KF_H
00014 #define KF_H
00015 
00016 
00017 #include "../stat/libFN.h"
00018 #include "../stat/libEF.h"
00019 #include "../math/chmat.h"
00020 
00021 namespace bdm
00022 {
00023 
00028         class KalmanFull
00029         {
00030                 protected:
00031                         int dimx, dimy, dimu;
00032                         mat A, B, C, D, R, Q;
00033 
00034                         
00035                         mat _Pp, _Ry, _iRy, _K;
00036                 public:
00037                         
00039                         vec mu;
00041                         mat P;
00042 
00043                         bool evalll;
00044                         double ll;
00045                 public:
00047                         KalmanFull ( mat A, mat B, mat C, mat D, mat R, mat Q, mat P0, vec mu0 );
00049                         void bayes ( const vec &dt );
00051                         friend std::ostream &operator<< ( std::ostream &os, const KalmanFull &kf );
00053                         KalmanFull() {};
00054         };
00055 
00056 
00064         template<class sq_T>
00065 
00066         class Kalman : public BM
00067         {
00068                 protected:
00070                         RV rvy;
00072                         RV rvu;
00074                         int dimx;
00076                         int dimy;
00078                         int dimu;
00080                         mat A;
00082                         mat B;
00084                         mat C;
00086                         mat D;
00088                         sq_T Q;
00090                         sq_T R;
00091 
00093                         enorm<sq_T> est;
00095                         enorm<sq_T> fy;
00096 
00098                         mat _K;
00100                         vec& _yp;
00102                         sq_T& _Ry;
00104                         vec& _mu;
00106                         sq_T& _P;
00107 
00108                 public:
00110                         Kalman ( );
00112                         Kalman ( const Kalman<sq_T> &K0 );
00114                         void set_parameters ( const mat &A0,const mat &B0,const mat &C0,const mat &D0,const sq_T &Q0,const sq_T &R0 );
00116                         void set_est ( const vec &mu0, const sq_T &P0 )
00117                         {
00118                                 sq_T pom ( dimy );
00119                                 est.set_parameters ( mu0,P0 );
00120                                 P0.mult_sym ( C,pom );
00121                                 fy.set_parameters ( C*mu0, pom );
00122                         };
00123 
00125                         void bayes ( const vec &dt );
00127                         const epdf& posterior() const {return est;}
00128                         const enorm<sq_T>* _e() const {return &est;}
00130                         mat& __K() {return _K;}
00132                         vec _dP() {return _P->getD();}
00133         };
00134 
00141         class KalmanCh : public Kalman<chmat>
00142         {
00143                 protected:
00145                         mat preA;
00147                         mat postA;
00148 
00149                 public:
00151                         BM* _copy_() const
00152                         {
00153                                 KalmanCh* K=new KalmanCh;
00154                                 K->set_parameters ( A,B,C,D,Q,R );
00155                                 K->set_statistics ( _mu,_P );
00156                                 return K;
00157                         }
00159                         void set_parameters ( const mat &A0,const mat &B0,const mat &C0,const mat &D0,const chmat &Q0,const chmat &R0 );
00160                         void set_statistics ( const vec &mu0, const chmat &P0 )
00161                         {
00162                                 est.set_parameters ( mu0,P0 );
00163                         };
00164 
00165 
00179                         void bayes ( const vec &dt );
00180         };
00181 
00187         class EKFfull : public KalmanFull, public BM
00188         {
00189                 protected:
00191                         diffbifn* pfxu;
00193                         diffbifn* phxu;
00194 
00195                         enorm<fsqmat> E;
00196                 public:
00198                         EKFfull ( );
00200                         void set_parameters ( diffbifn* pfxu, diffbifn* phxu, const mat Q0, const mat R0 );
00202                         void bayes ( const vec &dt );
00204                         void set_statistics ( vec mu0, mat P0 ) {mu=mu0;P=P0;};
00206                         const epdf& posterior() const{return E;};
00207                         const enorm<fsqmat>* _e() const{return &E;};
00208                         const mat _R() {return P;}
00209         };
00210 
00216         template<class sq_T>
00217         class EKF : public Kalman<fsqmat>
00218         {
00220                         diffbifn* pfxu;
00222                         diffbifn* phxu;
00223                 public:
00225                         EKF ( RV rvx, RV rvy, RV rvu );
00227                         EKF<sq_T>* _copy_() const { return new EKF<sq_T> ( this ); }
00229                         void set_parameters ( diffbifn* pfxu, diffbifn* phxu, const sq_T Q0, const sq_T R0 );
00231                         void bayes ( const vec &dt );
00232         };
00233 
00240         class EKFCh : public KalmanCh
00241         {
00242                 protected:
00244                         diffbifn* pfxu;
00246                         diffbifn* phxu;
00247                 public:
00249                         BM* _copy_() const
00250                         {
00251                                 EKFCh* E=new EKFCh;
00252                                 E->set_parameters ( pfxu,phxu,Q,R );
00253                                 E->set_statistics ( _mu,_P );
00254                                 return E;
00255                         }
00257                         void set_parameters ( diffbifn* pfxu, diffbifn* phxu, const chmat Q0, const chmat R0 );
00259                         void bayes ( const vec &dt );
00260         };
00261 
00266         class KFcondQR : public Kalman<ldmat>
00267         {
00268 
00269                 public:
00270                         void condition ( const vec &QR )
00271                         {
00272                                 it_assert_debug ( QR.length() == ( dimx+dimy ),"KFcondRQ: conditioning by incompatible vector" );
00273 
00274                                 Q.setD ( QR ( 0, dimx-1 ) );
00275                                 R.setD ( QR ( dimx, -1 ) );
00276                         };
00277         };
00278 
00283         class KFcondR : public Kalman<ldmat>
00284         {
00285 
00286                 public:
00288                         KFcondR ( ) : Kalman<ldmat> ( ) {};
00289 
00290                         void condition ( const vec &R0 )
00291                         {
00292                                 it_assert_debug ( R0.length() == ( dimy ),"KFcondR: conditioning by incompatible vector" );
00293 
00294                                 R.setD ( R0 );
00295                         };
00296 
00297         };
00298 
00300 
00301         template<class sq_T>
00302         Kalman<sq_T>::Kalman ( const Kalman<sq_T> &K0 ) : BM ( ),rvy ( K0.rvy ),rvu ( K0.rvu ),
00303                         dimx ( K0.dimx ), dimy ( K0.dimy ),dimu ( K0.dimu ),
00304                         A ( K0.A ), B ( K0.B ), C ( K0.C ), D ( K0.D ),
00305                         Q ( K0.Q ), R ( K0.R ),
00306                         est ( K0.est ), fy ( K0.fy ), _yp ( fy._mu() ),_Ry ( fy._R() ), _mu ( est._mu() ), _P ( est._R() )
00307         {
00308 
00309 
00310 
00311 
00312 
00313 
00314 
00315         }
00316 
00317         template<class sq_T>
00318         Kalman<sq_T>::Kalman ( ) : BM (), est ( ), fy (),  _yp ( fy._mu() ), _Ry ( fy._R() ), _mu ( est._mu() ), _P ( est._R() )
00319         {
00320         };
00321 
00322         template<class sq_T>
00323         void Kalman<sq_T>::set_parameters ( const mat &A0,const  mat &B0, const mat &C0, const mat &D0, const sq_T &Q0, const sq_T &R0 )
00324         {
00325                 dimx = A0.rows();
00326                 dimy = C0.rows();
00327                 dimu = B0.cols();
00328 
00329                 it_assert_debug ( A0.cols() ==dimx, "Kalman: A is not square" );
00330                 it_assert_debug ( B0.rows() ==dimx, "Kalman: B is not compatible" );
00331                 it_assert_debug ( C0.cols() ==dimx, "Kalman: C is not square" );
00332                 it_assert_debug ( ( D0.rows() ==dimy ) || ( D0.cols() ==dimu ), "Kalman: D is not compatible" );
00333                 it_assert_debug ( ( R0.cols() ==dimy ) || ( R0.rows() ==dimy ), "Kalman: R is not compatible" );
00334                 it_assert_debug ( ( Q0.cols() ==dimx ) || ( Q0.rows() ==dimx ), "Kalman: Q is not compatible" );
00335 
00336                 A = A0;
00337                 B = B0;
00338                 C = C0;
00339                 D = D0;
00340                 R = R0;
00341                 Q = Q0;
00342         }
00343 
00344         template<class sq_T>
00345         void Kalman<sq_T>::bayes ( const vec &dt )
00346         {
00347                 it_assert_debug ( dt.length() == ( dimy+dimu ),"KalmanFull::bayes wrong size of dt" );
00348 
00349                 sq_T iRy ( dimy );
00350                 vec u = dt.get ( dimy,dimy+dimu-1 );
00351                 vec y = dt.get ( 0,dimy-1 );
00352                 
00353                 _mu = A* _mu + B*u;
00354                 
00355                 _P.mult_sym ( A );
00356                 _P  +=Q;
00357 
00358                 
00359                 
00360                 _P.mult_sym ( C, _Ry );
00361                 _Ry  +=R;
00362 
00363                 mat Pfull = _P.to_mat();
00364 
00365                 _Ry.inv ( iRy ); 
00366                 _K = Pfull*C.transpose() * ( iRy.to_mat() );
00367 
00368                 sq_T pom ( ( int ) Pfull.rows() );
00369                 iRy.mult_sym_t ( C*Pfull,pom );
00370                 ( _P ) -= pom; 
00371                 ( _yp ) = C* _mu  +D*u; 
00372                 ( _mu ) += _K* ( y- _yp );
00373 
00374 
00375                 if ( evalll==true )   
00376                 {
00377                         ll=fy.evallog ( y );
00378                 }
00379 
00380 
00381 
00382         };
00383 
00391         class MultiModel: public BM
00392         {
00393                 protected:
00395                         Array<EKFCh*> Models;
00397                         vec w;
00399                         vec _lls;
00401                         int policy;
00403                         enorm<chmat> est;
00404                 public:
00405                         void set_parameters ( Array<EKFCh*> A, int pol0=1 )
00406                         {
00407                                 Models=A;
00408                                 w.set_length ( A.length() );
00409                                 _lls.set_length ( A.length() );
00410                                 policy=pol0;
00411                                 
00412                                 est.set_rv(RV("MM",A(0)->posterior().dimension(),0));
00413                                 est.set_parameters(A(0)->_e()->mean(), A(0)->_e()->_R());
00414                         }
00415                         void bayes ( const vec &dt )
00416                         {
00417                                 int n = Models.length();
00418                                 int i;
00419                                 for ( i=0;i<n;i++ )
00420                                 {
00421                                         Models ( i )->bayes ( dt );
00422                                         _lls ( i ) = Models ( i )->_ll();
00423                                 }
00424                                 double mlls=max ( _lls );
00425                                 w=exp ( _lls-mlls );
00426                                 w/=sum ( w ); 
00427                                 
00428                                 switch ( policy )
00429                                 {
00430                                         case 1:
00431                                         {
00432                                                 int mi=max_index ( w );
00433                                                 const enorm<chmat>* st=(Models(mi)->_e());
00434                                                 est.set_parameters(st->mean(), st->_R());
00435                                         }
00436                                         break;
00437                                         default: it_error ( "unknown policy" );
00438                                 }
00439                                 
00440                                 for ( i=0;i<n;i++ )
00441                                 {
00442                                                 Models ( i )->set_statistics ( est.mean(),est._R());
00443                                 }
00444                         }
00445                         
00446                         const enorm<chmat>* _e() const {return &est;}
00447                                 
00448                         const enorm<chmat>& posterior() const {return est;}
00449         };
00450 
00451 
00452 
00453 
00454         template<class sq_T>
00455         EKF<sq_T>::EKF ( RV rvx0, RV rvy0, RV rvu0 ) : Kalman<sq_T> ( rvx0,rvy0,rvu0 ) {}
00456 
00457         template<class sq_T>
00458         void EKF<sq_T>::set_parameters ( diffbifn* pfxu0,  diffbifn* phxu0,const sq_T Q0,const sq_T R0 )
00459         {
00460                 pfxu = pfxu0;
00461                 phxu = phxu0;
00462 
00463                 
00464                 pfxu->dfdx_cond ( _mu,zeros ( dimu ),A,true );
00465 
00466                 B.clear();
00467                 phxu->dfdx_cond ( _mu,zeros ( dimu ),C,true );
00468 
00469                 D.clear();
00470 
00471                 R = R0;
00472                 Q = Q0;
00473         }
00474 
00475         template<class sq_T>
00476         void EKF<sq_T>::bayes ( const vec &dt )
00477         {
00478                 it_assert_debug ( dt.length() == ( dimy+dimu ),"KalmanFull::bayes wrong size of dt" );
00479 
00480                 sq_T iRy ( dimy,dimy );
00481                 vec u = dt.get ( dimy,dimy+dimu-1 );
00482                 vec y = dt.get ( 0,dimy-1 );
00483                 
00484                 _mu = pfxu->eval ( _mu, u );
00485                 pfxu->dfdx_cond ( _mu,u,A,false ); 
00486 
00487                 
00488                 _P.mult_sym ( A );
00489                 _P +=Q;
00490 
00491                 
00492                 phxu->dfdx_cond ( _mu,u,C,false ); 
00493                 
00494                 _P.mult_sym ( C, _Ry );
00495                 ( _Ry ) +=R;
00496 
00497                 mat Pfull = _P.to_mat();
00498 
00499                 _Ry.inv ( iRy ); 
00500                 _K = Pfull*C.transpose() * ( iRy.to_mat() );
00501 
00502                 sq_T pom ( ( int ) Pfull.rows() );
00503                 iRy.mult_sym_t ( C*Pfull,pom );
00504                 ( _P ) -= pom; 
00505                 _yp = phxu->eval ( _mu,u ); 
00506                 ( _mu ) += _K* ( y-_yp );
00507 
00508                 if ( evalll==true ) {ll+=fy.evallog ( y );}
00509         };
00510 
00511 
00512 }
00513 #endif // KF_H
00514 
00515