work/mixpp/bdm/stat/libEF.h

Go to the documentation of this file.
00001 
00013 #ifndef EF_H
00014 #define EF_H
00015 
00016 #include <itpp/itbase.h>
00017 #include "../math/libDC.h"
00018 #include "libBM.h"
00019 #include "../itpp_ext.h"
00020 //#include <std>
00021 
00022 using namespace itpp;
00023 
00024 
00026 extern Uniform_RNG UniRNG;
00028 extern Normal_RNG NorRNG;
00030 extern Gamma_RNG GamRNG;
00031 
00038 class eEF : public epdf {
00039 
00040 public:
00041 //      eEF() :epdf() {};
00043         eEF ( const RV &rv ) :epdf ( rv ) {};
00045         virtual void tupdate ( double phi, mat &vbar, double nubar ) {};
00047         virtual void dupdate ( mat &v,double nu=1.0 ) {};
00048 };
00049 
00056 class mEF : public mpdf {
00057 
00058 public:
00060         mEF ( const RV &rv0, const RV &rvc0 ) :mpdf ( rv0,rvc0 ) {};
00061 };
00062 
00068 template<class sq_T>
00069 
00070 class enorm : public eEF {
00071 protected:
00073         vec mu;
00075         sq_T R;
00077         sq_T _iR;
00079         bool cached;
00081         int dim;
00082 public:
00083 //      enorm() :eEF() {};
00085         enorm ( RV &rv );
00087         void set_parameters ( const vec &mu,const sq_T &R );
00089         void tupdate ( double phi, mat &vbar, double nubar );
00091         void dupdate ( mat &v,double nu=1.0 );
00092 
00093         vec sample() const;
00095         mat sample ( int N ) const;
00096         double eval ( const vec &val ) const ;
00097         double evalpdflog ( const vec &val ) const;
00098         vec mean()const {return mu;}
00099 
00100 //Access methods
00102         vec* _mu() {return &mu;}
00103 
00105         void _R ( sq_T* &pR, sq_T* &piR ) {
00106                 pR=&R;
00107                 piR=&_iR;
00108         }
00109 
00111         void _cached ( bool what ) {cached=what;}
00112 };
00113 
00123 class egamma : public eEF {
00124 protected:
00126         vec alpha;
00128         vec beta;
00129 public :
00131         egamma ( const RV &rv ) :eEF ( rv ) {};
00133         void set_parameters ( const vec &a, const vec &b ) {alpha=a,beta=b;};
00134         vec sample() const;
00136         mat sample ( int N ) const;
00137         double evalpdflog ( const vec &val ) const;
00139         void _param ( vec* &a, vec* &b ) {a=&alpha;b=&beta;};
00140         vec mean()const {vec pom(alpha); pom/=beta; return pom;}
00141 };
00142 /*
00144 class emix : public epdf {
00145 protected:
00146         int n;
00147         vec &w;
00148         Array<epdf*> Coms;
00149 public:
00151         emix ( const RV &rv, vec &w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};
00152         void set_parameters( int &i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}
00153         vec mean(){vec pom; for(int i=0;i<n;i++){pom+=Coms(i)->mean()*w(i);} return pom;};
00154         vec sample() {it_error ( "Not implemented" );return 0;}
00155 };
00156 */
00157 
00159 
00160 class euni: public epdf {
00161 protected:
00163         vec low;
00165         vec high;
00167         vec distance;
00169         double nk;
00171         double lnk;
00172 public:
00174         euni ( const RV rv ) :epdf ( rv ) {}
00175         double eval ( const vec &val ) const  {return nk;}
00176         double evalpdflog ( const vec &val ) const  {return lnk;}
00177         vec sample() const {
00178                 vec smp ( rv.count() ); UniRNG.sample_vector ( rv.count(),smp );
00179                 return low+distance*smp;
00180         }
00182         void set_parameters ( const vec &low0, const vec &high0 ) {
00183                 distance = high0-low0;
00184                 it_assert_debug ( min ( distance ) >0.0,"bad support" );
00185                 low = low0;
00186                 high = high0;
00187                 nk = prod ( 1.0/distance );
00188                 lnk = log ( nk );
00189         }
00190         vec mean() const {vec pom=high; pom-=low; pom/=2.0; return pom;}
00191 };
00192 
00193 
00199 template<class sq_T>
00200 class mlnorm : public mEF {
00202         enorm<sq_T> epdf;
00203         vec* _mu; //cached epdf.mu;
00204         mat A;
00205 public:
00207         mlnorm ( RV &rv,RV &rvc );
00209         void set_parameters ( const  mat &A, const sq_T &R );
00211         vec samplecond ( vec &cond, double &lik );
00213         mat samplecond ( vec &cond, vec &lik, int n );
00215         void condition ( vec &cond );
00216 };
00217 
00227 class mgamma : public mEF {
00229         egamma epdf;
00231         double k;
00233         vec* _beta;
00234 
00235 public:
00237         mgamma ( const RV &rv,const RV &rvc );
00239         void set_parameters ( double k );
00241         vec samplecond ( vec &cond, double &lik );
00243         mat samplecond ( vec &cond, vec &lik, int n );
00244         void condition ( const vec &val ) {*_beta=k/val;};
00245 };
00246 
00248 enum RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
00254 class eEmp: public epdf {
00255 protected :
00257         int n;
00259         vec w;
00261         Array<vec> samples;
00262 public:
00264         eEmp ( const RV &rv0 ,int n0) :epdf ( rv0 ),n(n0),w(n),samples(n) {};
00266         void set_parameters ( const vec &w0, epdf* pdf0 );
00268         vec& _w()  {return w;};
00270         Array<vec>& _samples() {return samples;};
00272         ivec resample ( RESAMPLING_METHOD method = SYSTEMATIC );
00274         vec sample() const {it_error ( "Not implemented" );return 0;}
00276         double evalpdflog(const vec &val) const {it_error ( "Not implemented" );return 0.0;}
00277         vec mean()const {vec pom=zeros(rv.count()); 
00278                 for (int i=0;i<n;i++){pom+=samples(i)*w(i);}
00279                 return pom;
00280         }
00281 };
00282 
00283 
00285 
00286 template<class sq_T>
00287 enorm<sq_T>::enorm ( RV &rv ) :eEF(rv), mu ( rv.count() ),R ( rv.count() ),_iR ( rv.count() ),cached ( false ),dim ( rv.count() ) {};
00288 
00289 template<class sq_T>
00290 void enorm<sq_T>::set_parameters ( const vec &mu0, const sq_T &R0 ) {
00291 //Fixme test dimensions of mu0 and R0;
00292         mu = mu0;
00293         R = R0;
00294         if ( _iR.rows() !=R.rows() ) _iR=R; // memory allocation!
00295         R.inv ( _iR ); //update cache
00296         cached=true;
00297 };
00298 
00299 template<class sq_T>
00300 void enorm<sq_T>::dupdate ( mat &v, double nu ) {
00301         //
00302 };
00303 
00304 template<class sq_T>
00305 void enorm<sq_T>::tupdate ( double phi, mat &vbar, double nubar ) {
00306         //
00307 };
00308 
00309 template<class sq_T>
00310 vec enorm<sq_T>::sample() const {
00311         vec x ( dim );
00312         NorRNG.sample_vector ( dim,x );
00313         vec smp = R.sqrt_mult ( x );
00314 
00315         smp += mu;
00316         return smp;
00317 };
00318 
00319 template<class sq_T>
00320 mat enorm<sq_T>::sample ( int N )const {
00321         mat X ( dim,N );
00322         vec x ( dim );
00323         vec pom;
00324         int i;
00325 
00326         for ( i=0;i<N;i++ ) {
00327                 NorRNG.sample_vector ( dim,x );
00328                 pom = R.sqrt_mult ( x );
00329                 pom +=mu;
00330                 X.set_col ( i, pom );
00331         }
00332 
00333         return X;
00334 };
00335 
00336 template<class sq_T>
00337 double enorm<sq_T>::eval ( const vec &val ) const {
00338         double pdfl,e;
00339         pdfl = evalpdflog ( val );
00340         e = exp ( pdfl );
00341         return e;
00342 };
00343 
00344 template<class sq_T>
00345 double enorm<sq_T>::evalpdflog ( const vec &val ) const {
00346         if ( !cached ) {it_error("this should not happen, see cached");}
00347 
00348         // 1.83787706640935 = log(2pi)
00349         return -0.5* ( R.cols() * 1.83787706640935 +R.logdet() +_iR.qform ( mu-val ) );
00350 };
00351 
00352 
00353 template<class sq_T>
00354 mlnorm<sq_T>::mlnorm ( RV &rv0,RV &rvc0 ) :mEF ( rv0,rvc0 ),epdf ( rv ),A ( rv0.count(),rv0.count() ) {
00355         _mu = epdf._mu();
00356 }
00357 
00358 template<class sq_T>
00359 void mlnorm<sq_T>::set_parameters ( const mat &A0, const sq_T &R0 ) {
00360         epdf.set_parameters ( zeros ( rv.count() ),R0 );
00361         A = A0;
00362 }
00363 
00364 template<class sq_T>
00365 vec mlnorm<sq_T>::samplecond ( vec &cond, double &lik ) {
00366         this->condition ( cond );
00367         vec smp = epdf.sample();
00368         lik = epdf.eval ( smp );
00369         return smp;
00370 }
00371 
00372 template<class sq_T>
00373 mat mlnorm<sq_T>::samplecond ( vec &cond, vec &lik, int n ) {
00374         int i;
00375         int dim = rv.count();
00376         mat Smp ( dim,n );
00377         vec smp ( dim );
00378         this->condition ( cond );
00379 
00380         for ( i=0; i<n; i++ ) {
00381                 smp = epdf.sample();
00382                 lik ( i ) = epdf.eval ( smp );
00383                 Smp.set_col ( i ,smp );
00384         }
00385 
00386         return Smp;
00387 }
00388 
00389 template<class sq_T>
00390 void mlnorm<sq_T>::condition ( vec &cond ) {
00391         *_mu = A*cond;
00392 //R is already assigned;
00393 }
00394 
00396 
00397 
00398 #endif //EF_H

Generated on Wed Mar 12 16:15:45 2008 for mixpp by  doxygen 1.5.3