bdm::mgnorm< sq_T > Class Template Reference

Mpdf with general function for mean value. More...

#include <libEF.h>

List of all members.

Public Member Functions

 mgnorm ()
 default constructor
void set_parameters (fnc *g0, const sq_T &R0)
 set mean function
void condition (const vec &cond)
 Update ep so that it represents this mpdf conditioned on rvc = cond.
void from_setting (const Setting &root)
virtual string to_string ()
 This method returns a basic info about the current instance.
virtual void to_setting (Setting &root) const
 This method save all the instance properties into the Setting structure.
virtual void validate ()
 This method TODO.
Matematical operations
virtual vec samplecond (const vec &cond)
 Returns a sample from the density conditioned on cond, $x \sim epdf(rv|cond)$.
virtual mat samplecond_m (const vec &cond, int N)
 Returns.
virtual double evallogcond (const vec &dt, const vec &cond)
 Shortcut for conditioning and evaluation of the internal epdf. In some cases, this operation can be implemented efficiently.
virtual vec evallogcond_m (const mat &Dt, const vec &cond)
 Matrix version of evallogcond.
Access to attributes
RV _rv ()
RV _rvc ()
int dimension ()
int dimensionc ()
epdf_epdf ()
epdf_e ()
Connection to other objects
void set_rvc (const RV &rvc0)
void set_rv (const RV &rv0)
bool isnamed ()

Protected Attributes

enorm< sq_T > epdf
 Internal epdf that arise by conditioning on rvc.
vec & mu
fncg
int dimc
 dimension of the condition
RV rvc
 random variable in condition
epdfep
 pointer to internal epdf


Detailed Description

template<class sq_T>
class bdm::mgnorm< sq_T >

Mpdf with general function for mean value.

Member Function Documentation

template<class sq_T >
void bdm::mgnorm< sq_T >::from_setting ( const Setting &  root  )  [inline, virtual]

UI for mgnorm

The mgnorm is constructed from a structure with fields:

                        system = {
                                type = "mgnorm";
                                // function for mean value evolution
                                g = {type="fnc"; ... }

                                // variance
                                R = [1, 0,
                                         0, 1];
                                // --OR --
                                dR = [1, 1];

                                // == OPTIONAL ==

                                // description of y variables
                                y = {type="rv"; names=["y", "u"];};
                                // description of u variable
                                u = {type="rv"; names=[];}
                        };

Result if

Reimplemented from bdm::bdmroot.

References bdm::UI::get(), and bdm::mgnorm< sq_T >::set_parameters().

virtual vec bdm::mpdf::samplecond ( const vec &  cond  )  [inline, virtual, inherited]

Returns a sample from the density conditioned on cond, $x \sim epdf(rv|cond)$.

Parameters:
cond is numeric value of rv

Reimplemented in bdm::mprod.

References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample().

Referenced by bdm::MPF< BM_T >::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().

virtual mat bdm::mpdf::samplecond_m ( const vec &  cond,
int  N 
) [inline, virtual, inherited]

Returns.

Parameters:
N samples from the density conditioned on cond, $x \sim epdf(rv|cond)$.
cond is numeric value of rv

References bdm::mpdf::condition(), bdm::epdf::dimension(), bdm::mpdf::ep, and bdm::epdf::sample().


The documentation for this class was generated from the following file:

Generated on Wed Jun 17 14:13:29 2009 for mixpp by  doxygen 1.5.8