<<<<<<< HEAD:library/doc/html/classbdm_1_1BMEF.html
#include <exp_family.h>
=======
#include <exp_family.h>
>>>>>>> doc:library/doc/html/classbdm_1_1BMEF.html
Public Member Functions | |
BMEF (double frg0=1.0) | |
Default constructor (=empty constructor). | |
BMEF (const BMEF &B) | |
Copy constructor. | |
virtual void | set_statistics (const BMEF *BM0) |
get statistics from another model | |
virtual void | bayes (const vec &data, const double w) |
Weighted update of sufficient statistics (Bayes rule). | |
void | bayes (const vec &dt) |
Incremental Bayes rule. | |
virtual void | flatten (const BMEF *B) |
Flatten the posterior according to the given BMEF (of the same type!). | |
BMEF * | _copy_ () const |
Flatten the posterior as if to keep nu0 data. | |
virtual string | to_string () |
This method returns a basic info about the current instance. | |
virtual void | from_setting (const Setting &set) |
This method arrange instance properties according the data stored in the Setting structure. | |
virtual void | to_setting (Setting &set) const |
This method save all the instance properties into the Setting structure. | |
virtual void | validate () |
This method TODO. | |
Mathematical operations | |
virtual void | bayesB (const mat &Dt) |
Batch Bayes rule (columns of Dt are observations). | |
virtual double | logpred (const vec &dt) const |
vec | logpred_m (const mat &dt) const |
Matrix version of logpred. | |
virtual epdf * | epredictor () const |
Constructs a predictive density . | |
virtual mpdf * | predictor () const |
Constructs a conditional density 1-step ahead predictor. | |
Access to attributes | |
const RV & | _drv () const |
void | set_drv (const RV &rv) |
void | set_rv (const RV &rv) |
double | _ll () const |
void | set_evalll (bool evl0) |
virtual const epdf & | posterior () const =0 |
virtual const epdf * | _e () const =0 |
Protected Attributes | |
double | frg |
forgetting factor | |
double | last_lognc |
cached value of lognc() in the previous step (used in evaluation of ll ) | |
RV | drv |
Random variable of the data (optional). | |
double | ll |
Logarithm of marginalized data likelihood. | |
bool | evalll |
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time. | |
Extension to conditional BM | |
This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed | |
const RV & | _rvc () const |
access function | |
virtual void | condition (const vec &val) |
Substitute val for rvc . | |
RV | rvc |
Name of extension variable. | |
Logging of results | |
virtual void | set_options (const string &opt) |
Set boolean options from a string recognized are: "logbounds,logll". | |
virtual void | log_add (logger &L, const string &name="") |
Add all logged variables to a logger. | |
virtual void | logit (logger &L) |
ivec | LIDs |
IDs of storages in loggers 4:[1=mean,2=lb,3=ub,4=ll]. | |
ivec | LFlags |
Flags for logging - same size as LIDs, each entry correspond to the same in LIDs. |
void bdm::BMEF::bayes | ( | const vec & | dt | ) | [virtual] |
Incremental Bayes rule.
dt | vector of input data |
Implements bdm::BM.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
<<<<<<< HEAD:library/doc/html/classbdm_1_1BMEF.htmlReferences bayes().
=======References bayes().
>>>>>>> doc:library/doc/html/classbdm_1_1BMEF.htmlvirtual double bdm::BM::logpred | ( | const vec & | dt | ) | const [inline, virtual, inherited] |
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
<<<<<<< HEAD:library/doc/html/classbdm_1_1BMEF.htmlReferenced by bdm::BM::logpred_m().
=======Referenced by bdm::BM::logpred_m().
>>>>>>> doc:library/doc/html/classbdm_1_1BMEF.html