<<<<<<< HEAD:library/doc/html/classbdm_1_1migamma.html
#include <exp_family.h>
=======
#include <exp_family.h>
>>>>>>> doc:library/doc/html/classbdm_1_1migamma.html
Public Member Functions | |
void | set_parameters (int len, double k0) |
Set value of k . | |
void | condition (const vec &val) |
Update ep so that it represents this mpdf conditioned on rvc = cond. | |
void | from_setting (const Setting &set) |
virtual string | to_string () |
This method returns a basic info about the current instance. | |
virtual void | to_setting (Setting &set) const |
This method save all the instance properties into the Setting structure. | |
virtual void | validate () |
This method TODO. | |
Constructors | |
migamma () | |
migamma (const migamma &m) | |
Matematical operations | |
virtual vec | samplecond (const vec &cond) |
Returns a sample from the density conditioned on cond , . | |
virtual mat | samplecond_m (const vec &cond, int N) |
Returns. | |
virtual double | evallogcond (const vec &dt, const vec &cond) |
Shortcut for conditioning and evaluation of the internal epdf. In some cases, this operation can be implemented efficiently. | |
virtual vec | evallogcond_m (const mat &Dt, const vec &cond) |
Matrix version of evallogcond. | |
virtual vec | evallogcond_m (const Array< vec > &Dt, const vec &cond) |
Array<vec> version of evallogcond. | |
Access to attributes | |
RV | _rv () |
RV | _rvc () |
int | dimension () |
int | dimensionc () |
epdf & | _epdf () |
epdf * | _e () |
Connection to other objects | |
void | set_rvc (const RV &rvc0) |
void | set_rv (const RV &rv0) |
bool | isnamed () |
Protected Attributes | |
eigamma | epdf |
Internal epdf that arise by conditioning on rvc . | |
double | k |
Constant . | |
vec & | _alpha |
cache of epdf.alpha | |
vec & | _beta |
cache of epdf.beta | |
int | dimc |
dimension of the condition | |
RV | rvc |
random variable in condition | |
epdf * | ep |
pointer to internal epdf |
<<<<<<< HEAD:library/doc/html/classbdm_1_1migamma.html
Mean value, , of this density is given by rvc
. Standard deviation of the random walk is proportional to one -th the mean. This is achieved by setting and .
The standard deviation of the walk is then: .
rvc
. Standard deviation of the random walk is proportional to one -th the mean. This is achieved by setting and .The standard deviation of the walk is then: .
void bdm::mpdf::from_setting | ( | const Setting & | set | ) | [inline, virtual, inherited] |
Load from structure with elements:
{ rv = {class="RV", names=(...),}; // RV describing meaning of random variable rvc= {class="RV", names=(...),}; // RV describing meaning of random variable in condition // elements of offsprings }
Reimplemented from bdm::root.
Reimplemented in bdm::mepdf, bdm::mprod, bdm::mgnorm< sq_T >, bdm::mgamma, bdm::migamma_ref, and bdm::mlognorm.
virtual vec bdm::mpdf::samplecond | ( | const vec & | cond | ) | [inline, virtual, inherited] |
Returns a sample from the density conditioned on cond
, .
cond | is numeric value of rv |
Reimplemented in bdm::mprod.
<<<<<<< HEAD:library/doc/html/classbdm_1_1migamma.htmlReferences bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample().
Referenced by bdm::MPF< BM_T >::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().
=======References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample().
Referenced by bdm::MPF< BM_T >::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().
>>>>>>> doc:library/doc/html/classbdm_1_1migamma.htmlvirtual mat bdm::mpdf::samplecond_m | ( | const vec & | cond, | |
int | N | |||
) | [inline, virtual, inherited] |
Returns.
N | samples from the density conditioned on cond , . | |
cond | is numeric value of rv |
References bdm::mpdf::condition(), bdm::epdf::dimension(), bdm::mpdf::ep, and bdm::epdf::sample().
=======References bdm::mpdf::condition(), bdm::epdf::dimension(), bdm::mpdf::ep, and bdm::epdf::sample().
>>>>>>> doc:library/doc/html/classbdm_1_1migamma.html