<<<<<<< HEAD:library/doc/html/classbdm_1_1mlognorm.html
#include <exp_family.h>
=======
#include <exp_family.h>
>>>>>>> doc:library/doc/html/classbdm_1_1mlognorm.html
Public Member Functions | |
mlognorm () | |
Constructor. | |
void | set_parameters (int size, double k) |
Set value of k . | |
void | condition (const vec &val) |
Update ep so that it represents this mpdf conditioned on rvc = cond. | |
void | from_setting (const Setting &set) |
virtual string | to_string () |
This method returns a basic info about the current instance. | |
virtual void | to_setting (Setting &set) const |
This method save all the instance properties into the Setting structure. | |
virtual void | validate () |
This method TODO. | |
Matematical operations | |
virtual vec | samplecond (const vec &cond) |
Returns a sample from the density conditioned on cond , . | |
virtual mat | samplecond_m (const vec &cond, int N) |
Returns. | |
virtual double | evallogcond (const vec &dt, const vec &cond) |
Shortcut for conditioning and evaluation of the internal epdf. In some cases, this operation can be implemented efficiently. | |
virtual vec | evallogcond_m (const mat &Dt, const vec &cond) |
Matrix version of evallogcond. | |
virtual vec | evallogcond_m (const Array< vec > &Dt, const vec &cond) |
Array<vec> version of evallogcond. | |
Access to attributes | |
RV | _rv () |
RV | _rvc () |
int | dimension () |
int | dimensionc () |
epdf & | _epdf () |
epdf * | _e () |
Connection to other objects | |
void | set_rvc (const RV &rvc0) |
void | set_rv (const RV &rv0) |
bool | isnamed () |
Protected Attributes | |
elognorm | eno |
double | sig2 |
parameter 1/2*sigma^2 | |
vec & | mu |
access | |
int | dimc |
dimension of the condition | |
RV | rvc |
random variable in condition | |
epdf * | ep |
pointer to internal epdf |
<<<<<<< HEAD:library/doc/html/classbdm_1_1mlognorm.html Mean value, , is...
==== Check == vv = Standard deviation of the random walk is proportional to one -th the mean. This is achieved by setting and .
The standard deviation of the walk is then: .
==== Check == vv = Standard deviation of the random walk is proportional to one -th the mean. This is achieved by setting and .
The standard deviation of the walk is then: .
void bdm::mlognorm::from_setting | ( | const Setting & | set | ) | [virtual] |
The mlognorm is constructed from a structure with fields:
system = { type = "mlognorm"; k = 0.1; // constant k mu0 = [1., 1.]; // == OPTIONAL == // description of y variables y = {type="rv"; names=["y", "u"];}; // description of u variable u = {type="rv"; names=[];} };
Reimplemented from bdm::mpdf.
<<<<<<< HEAD:library/doc/html/classbdm_1_1mlognorm.htmlReferences condition(), bdm::UI::get(), and set_parameters().
=======References condition(), and set_parameters().
>>>>>>> doc:library/doc/html/classbdm_1_1mlognorm.htmlvirtual vec bdm::mpdf::samplecond | ( | const vec & | cond | ) | [inline, virtual, inherited] |
Returns a sample from the density conditioned on cond
, .
cond | is numeric value of rv |
Reimplemented in bdm::mprod.
<<<<<<< HEAD:library/doc/html/classbdm_1_1mlognorm.htmlReferences bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample().
Referenced by bdm::MPF< BM_T >::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().
=======References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample().
Referenced by bdm::MPF< BM_T >::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().
>>>>>>> doc:library/doc/html/classbdm_1_1mlognorm.htmlvirtual mat bdm::mpdf::samplecond_m | ( | const vec & | cond, | |
int | N | |||
) | [inline, virtual, inherited] |
Returns.
N | samples from the density conditioned on cond , . | |
cond | is numeric value of rv |
References bdm::mpdf::condition(), bdm::epdf::dimension(), bdm::mpdf::ep, and bdm::epdf::sample().
=======References bdm::mpdf::condition(), bdm::epdf::dimension(), bdm::mpdf::ep, and bdm::epdf::sample().
>>>>>>> doc:library/doc/html/classbdm_1_1mlognorm.html