#include <exp_family.h>
| Public Member Functions | |
| BMEF (double frg0=1.0) | |
| Default constructor (=empty constructor). | |
| BMEF (const BMEF &B) | |
| Copy constructor. | |
| virtual void | set_statistics (const BMEF *BM0) | 
| get statistics from another model | |
| virtual void | bayes (const vec &data, const double w) | 
| Weighted update of sufficient statistics (Bayes rule). | |
| void | bayes (const vec &dt) | 
| Incremental Bayes rule. | |
| virtual void | flatten (const BMEF *B) | 
| Flatten the posterior according to the given BMEF (of the same type!). | |
| BMEF * | _copy_ () const | 
| Flatten the posterior as if to keep nu0 data. | |
| virtual string | to_string () | 
| This method returns a basic info about the current instance. | |
| virtual void | from_setting (const Setting &set) | 
| This method arrange instance properties according the data stored in the Setting structure. | |
| virtual void | to_setting (Setting &set) const | 
| This method save all the instance properties into the Setting structure. | |
| virtual void | validate () | 
| This method TODO. | |
| Mathematical operations | |
| virtual void | bayesB (const mat &Dt) | 
| Batch Bayes rule (columns of Dt are observations). | |
| virtual double | logpred (const vec &dt) const | 
| vec | logpred_m (const mat &dt) const | 
| Matrix version of logpred. | |
| virtual epdf * | epredictor () const | 
| Constructs a predictive density  . | |
| virtual mpdf * | predictor () const | 
| Constructs a conditional density 1-step ahead predictor. | |
| Access to attributes | |
| const RV & | _drv () const | 
| void | set_drv (const RV &rv) | 
| void | set_rv (const RV &rv) | 
| double | _ll () const | 
| void | set_evalll (bool evl0) | 
| virtual const epdf & | posterior () const =0 | 
| virtual const epdf * | _e () const =0 | 
| Protected Attributes | |
| double | frg | 
| forgetting factor | |
| double | last_lognc | 
| cached value of lognc() in the previous step (used in evaluation of ll) | |
| RV | drv | 
| Random variable of the data (optional). | |
| double | ll | 
| Logarithm of marginalized data likelihood. | |
| bool | evalll | 
| If true, the filter will compute likelihood of the data record and store it in ll. Set to false if you want to save computational time. | |
| Extension to conditional BM | |
| This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed | |
| const RV & | _rvc () const | 
| access function | |
| virtual void | condition (const vec &val) | 
| Substitute valforrvc. | |
| RV | rvc | 
| Name of extension variable. | |
| Logging of results | |
| virtual void | set_options (const string &opt) | 
| Set boolean options from a string recognized are: "logbounds,logll". | |
| virtual void | log_add (logger &L, const string &name="") | 
| Add all logged variables to a logger. | |
| virtual void | logit (logger &L) | 
| ivec | LIDs | 
| IDs of storages in loggers 4:[1=mean,2=lb,3=ub,4=ll]. | |
| ivec | LFlags | 
| Flags for logging - same size as LIDs, each entry correspond to the same in LIDs. | |
| void bdm::BMEF::bayes | ( | const vec & | dt | ) |  [virtual] | 
Incremental Bayes rule.
| dt | vector of input data | 
Implements bdm::BM.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
References bayes().
| virtual double bdm::BM::logpred | ( | const vec & | dt | ) | const  [inline, virtual, inherited] | 
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
Referenced by bdm::BM::logpred_m().
 1.5.8
 1.5.8