#include <arx.h>
Public Member Functions | |
| void | set_statistics (const BMEF *BM0) | 
| Set sufficient statistics.  | |
| void | from_setting (const Setting &set) | 
| virtual string | to_string () | 
| This method returns a basic info about the current instance.  | |
| virtual void | to_setting (Setting &set) const | 
| This method save all the instance properties into the Setting structure.  | |
| virtual void | validate () | 
| This method TODO.  | |
Constructors  | |
| ARX (const double frg0=1.0) | |
| ARX (const ARX &A0) | |
| ARX * | _copy_ () const | 
| Flatten the posterior as if to keep nu0 data.  | |
| void | set_parameters (double frg0) | 
| void | set_statistics (int dimx0, const ldmat V0, double nu0=-1.0) | 
Mathematical operations  | |
| void | bayes (const vec &dt, const double w) | 
Weighted Bayes  .  | |
| void | bayes (const vec &dt) | 
| Incremental Bayes rule.   | |
| double | logpred (const vec &dt) const | 
| void | flatten (const BMEF *B) | 
| Flatten the posterior according to the given BMEF (of the same type!).  | |
| enorm< ldmat > * | epredictor (const vec &rgr) const | 
| Conditioned version of the predictor.  | |
| enorm< ldmat > * | epredictor () const | 
| Predictor for empty regressor.  | |
| mlnorm< ldmat > * | predictor () const | 
| conditional version of the predictor   | |
| mlstudent * | predictor_student () const | 
| ivec | structure_est (egiw Eg0) | 
| Brute force structure estimation.   | |
Access attributes  | |
| const egiw * | _e () const | 
| const egiw & | posterior () const | 
Connection  | |
| void | set_drv (const RV &drv0) | 
| RV & | get_yrv () | 
Mathematical operations  | |
| virtual void | bayesB (const mat &Dt) | 
| Batch Bayes rule (columns of Dt are observations).  | |
| vec | logpred_m (const mat &dt) const | 
| Matrix version of logpred.  | |
Access to attributes  | |
| const RV & | _drv () const | 
| void | set_rv (const RV &rv) | 
| double | _ll () const | 
| void | set_evalll (bool evl0) | 
Protected Attributes | |
| int | dimx | 
| size of output variable (needed in regressors)  | |
| RV | _yrv | 
| egiw | est | 
Posterior estimate of   in the form of Normal-inverse Wishart density.  | |
| ldmat & | V | 
| cached value of est.V  | |
| double & | nu | 
| cached value of est.nu  | |
| double | frg | 
| forgetting factor  | |
| double | last_lognc | 
cached value of lognc() in the previous step (used in evaluation of ll )  | |
| RV | drv | 
| Random variable of the data (optional).  | |
| double | ll | 
| Logarithm of marginalized data likelihood.  | |
| bool | evalll | 
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time.  | |
Extension to conditional BM | |
| This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed  | |
| const RV & | _rvc () const | 
| access function  | |
| virtual void | condition (const vec &val) | 
Substitute val for rvc.  | |
| RV | rvc | 
| Name of extension variable.  | |
Logging of results | |
| virtual void | set_options (const string &opt) | 
| Set boolean options from a string recognized are: "logbounds,logll".  | |
| virtual void | log_add (logger &L, const string &name="") | 
| Add all logged variables to a logger.  | |
| virtual void | logit (logger &L) | 
| ivec | LIDs | 
| IDs of storages in loggers 4:[1=mean,2=lb,3=ub,4=ll].  | |
| ivec | LFlags | 
| Flags for logging - same size as LIDs, each entry correspond to the same in LIDs.  | |
Regression of the following kind:
 where unknown parameters rv are 
, regression vector 
 is a known function of past outputs and exogeneous variables 
. Distrubances 
 are supposed to be normally distributed: 
See Theory of ARX model estimation for mathematical treatment.
The easiest way how to use the class is:
#include "estim/arx.h" using namespace bdm; // estimation of AR(0) model int main() { //prior mat V0 = 0.00001*eye(2); V0(0,0)= 0.1; // ARX Ar; Ar.set_statistics(1, V0); //nu is default (set to have finite moments) // forgetting is default: 1.0 mat Data = concat_vertical( randn(1,100), ones(1,100) ); Ar.bayesB( Data); cout << "Expected value of Theta is: " << Ar.posterior().mean() <<endl; }
| void bdm::ARX::bayes | ( | const vec & | dt | ) |  [inline, virtual] | 
        
| void bdm::ARX::from_setting | ( | const Setting & | set | ) |  [virtual] | 
        
The ARX is constructed from a structure with fields:
        estimator = {
                type = "ARX";
                y = {type="rv", ...}   // description of output variables
                rgr = {type="rv", ...} // description of regressor variables
                constant = true;       // boolean switch if the constant term is modelled or not
                //optional fields
                dV0 = [1e-3, 1e-5, 1e-5, 1e-5]; 
                                                           // default: 1e-3 for y, 1e-5 for rgr
                nu0 = 6;               // default: rgrlen + 2
                frg = 1.0;             // forgetting, default frg=1.0
        };
The estimator will assign names of the posterior in the form ["theta_i" and "r_i"]
Reimplemented from bdm::root.
References bdm::RV::_dsize(), bdm::BMEF::frg, and bdm::UI::get().
| double bdm::ARX::logpred | ( | const vec & | dt | ) |  const [virtual] | 
        
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented from bdm::BM.
References bdm::egiw::_nu(), bdm::egiw::_V(), est, bdm::BM::evalll, bdm::BMEF::frg, bdm::BMEF::last_lognc, bdm::egiw::lognc(), nu, ldmat::opupdt(), bdm::egiw::pow(), and V.
conditional version of the predictor
<----------- TODO
Reimplemented from bdm::BM.
References bdm::epdf::dimension(), est, bdm::egiw::mean_mat(), ldmat::rows(), bdm::mlnorm< sq_T >::set_parameters(), and V.
| ivec bdm::ARX::structure_est | ( | egiw | Eg0 | ) | 
Brute force structure estimation.
References bdm::epdf::dimension(), est, and bdm::egiw::lognc().
RV bdm::ARX::_yrv [protected]           | 
        
description of modelled data 
 in the likelihood function Do NOT access directly, only via get_yrv(). 
 1.5.8