#include <libKF.h>


Public Member Functions | |
| EKF (RV rvx, RV rvy, RV rvu) | |
| Default constructor.  | |
| void | set_parameters (diffbifn *pfxu, diffbifn *phxu, const sq_T Q0, const sq_T R0) | 
| Set nonlinear functions for mean values and covariance matrices.  | |
| void | bayes (const vec &dt) | 
| Here dt = [yt;ut] of appropriate dimensions.  | |
| void | set_parameters (const mat &A0, const mat &B0, const mat &C0, const mat &D0, const ldmat &R0, const ldmat &Q0) | 
| Set parameters with check of relevance.  | |
| void | set_est (const vec &mu0, const ldmat &P0) | 
| Set estimate values, used e.g. in initialization.  | |
| void | bayes (mat Dt) | 
| Batch Bayes rule (columns of Dt are observations).  | |
| epdf & | _epdf () | 
| access function  | |
| const RV & | _rv () const | 
| access function  | |
| double | _ll () const | 
| access function  | |
Protected Attributes | |
| RV | rvy | 
| Indetifier of output rv.  | |
| RV | rvu | 
| Indetifier of exogeneous rv.  | |
| int | dimx | 
| cache of rv.count()  | |
| int | dimy | 
| cache of rvy.count()  | |
| int | dimu | 
| cache of rvu.count()  | |
| mat | A | 
| Matrix A.  | |
| mat | B | 
| Matrix B.  | |
| mat | C | 
| Matrix C.  | |
| mat | D | 
| Matrix D.  | |
| ldmat | Q | 
| Matrix Q in square-root form.  | |
| ldmat | R | 
| Matrix R in square-root form.  | |
| enorm< ldmat > | est | 
| posterior density on $x_t$  | |
| enorm< ldmat > | fy | 
| preditive density on $y_t$  | |
| mat | _K | 
| placeholder for Kalman gain  | |
| vec * | _yp | 
| cache of fy.mu  | |
| ldmat * | _Ry | 
| cache of fy.R  | |
| ldmat * | _iRy | 
| cache of fy.iR  | |
| vec * | _mu | 
| cache of est.mu  | |
| ldmat * | _P | 
| cache of est.R  | |
| ldmat * | _iP | 
| cache of est.iR  | |
| RV | rv | 
| Random variable of the posterior.  | |
| double | ll | 
| Logarithm of marginalized data likelihood.  | |
| bool | evalll | 
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save time.  | |
An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean.
 1.5.3