#include <kalman.h>
Public Member Functions | |
| BM * | _copy_ () const | 
| copy constructor  | |
| void | set_parameters (const mat &A0, const mat &B0, const mat &C0, const mat &D0, const chmat &Q0, const chmat &R0) | 
| Set parameters with check of relevance.  | |
| void | set_statistics (const vec &mu0, const chmat &P0) | 
| void | bayes (const vec &dt) | 
| Here dt = [yt;ut] of appropriate dimensions.   | |
| void | set_est (const vec &mu0, const chmat &P0) | 
| Set estimate values, used e.g. in initialization.  | |
| const epdf & | posterior () const | 
| access function  | |
| const enorm< chmat > * | _e () const | 
| mat & | __K () | 
| access function  | |
| vec | _dP () | 
| access function  | |
| virtual string | to_string () | 
| This method returns a basic info about the current instance.  | |
| virtual void | from_setting (const Setting &set) | 
| This method arrange instance properties according the data stored in the Setting structure.  | |
| virtual void | to_setting (Setting &set) const | 
| This method save all the instance properties into the Setting structure.  | |
| virtual void | validate () | 
| This method TODO.  | |
Mathematical operations  | |
| virtual void | bayesB (const mat &Dt) | 
| Batch Bayes rule (columns of Dt are observations).  | |
| virtual double | logpred (const vec &dt) const | 
| vec | logpred_m (const mat &dt) const | 
| Matrix version of logpred.  | |
| virtual epdf * | epredictor () const | 
Constructs a predictive density  .  | |
| virtual mpdf * | predictor () const | 
| Constructs a conditional density 1-step ahead predictor.  | |
Access to attributes  | |
| const RV & | _drv () const | 
| void | set_drv (const RV &rv) | 
| void | set_rv (const RV &rv) | 
| double | _ll () const | 
| void | set_evalll (bool evl0) | 
Protected Attributes | |
| mat | preA | 
| pre array (triangular matrix)  | |
| mat | postA | 
| post array (triangular matrix)  | |
| RV | rvy | 
| Indetifier of output rv.  | |
| RV | rvu | 
| Indetifier of exogeneous rv.  | |
| int | dimx | 
| cache of rv.count()  | |
| int | dimy | 
| cache of rvy.count()  | |
| int | dimu | 
| cache of rvu.count()  | |
| mat | A | 
| Matrix A.  | |
| mat | B | 
| Matrix B.  | |
| mat | C | 
| Matrix C.  | |
| mat | D | 
| Matrix D.  | |
| chmat | Q | 
| Matrix Q in square-root form.  | |
| chmat | R | 
| Matrix R in square-root form.  | |
| enorm< chmat > | est | 
| posterior density on $x_t$  | |
| enorm< chmat > | fy | 
| preditive density on $y_t$  | |
| mat | _K | 
| placeholder for Kalman gain  | |
| vec & | _yp | 
| cache of fy.mu  | |
| chmat & | _Ry | 
| cache of fy.R  | |
| vec & | _mu | 
| cache of est.mu  | |
| chmat & | _P | 
| cache of est.R  | |
| RV | drv | 
| Random variable of the data (optional).  | |
| double | ll | 
| Logarithm of marginalized data likelihood.  | |
| bool | evalll | 
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time.  | |
Extension to conditional BM | |
| This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed  | |
| const RV & | _rvc () const | 
| access function  | |
| virtual void | condition (const vec &val) | 
Substitute val for rvc.  | |
| RV | rvc | 
| Name of extension variable.  | |
Logging of results | |
| virtual void | set_options (const string &opt) | 
| Set boolean options from a string, recognized are: "logbounds,logll".  | |
| virtual void | log_add (logger &L, const string &name="") | 
| Add all logged variables to a logger.  | |
| virtual void | logit (logger &L) | 
| ivec | LIDs | 
| IDs of storages in loggers 4:[1=mean,2=lb,3=ub,4=ll].  | |
| ivec | LFlags | 
| Flags for logging - same size as LIDs, each entry correspond to the same in LIDs.  | |
Trivial example:
#include "estim/kalman.h" using namespace bdm; // estimation of AR(0) model int main() { //dimensions int dx=3, dy=3, du=1; // matrices mat A = eye(dx); mat B = zeros(dx,du); mat C = eye(dx); mat D = zeros(dy,du); mat Q = eye(dx); mat R = 0.1*eye(dy); //prior mat P0 = 100*eye(dx); vec mu0 = zeros(dx); // Estimator KalmanCh KF; KF.set_parameters(A,B,C,D,/*covariances*/ Q,R); KF.set_statistics(mu0,P0); // Estimation loop for (int i=0;i<100;i++){ KF.bayes(randn(dx+du)); } //print results cout << "Posterior estimate of x is: " << endl; cout << "mean: "<< KF.posterior().mean()<< endl; cout << "variance: "<< KF.posterior().variance()<< endl; }
| void bdm::KalmanCh::bayes | ( | const vec & | dt | ) |  [virtual] | 
        
Here dt = [yt;ut] of appropriate dimensions.
The following equality hold::
Thus this object evaluates only predictors! Not filtering densities.
Reimplemented from bdm::Kalman< chmat >.
Reimplemented in bdm::EKFCh.
References chmat::_Ch(), bdm::Kalman< chmat >::_K, bdm::Kalman< chmat >::_mu, bdm::Kalman< chmat >::_P, bdm::Kalman< chmat >::_Ry, bdm::Kalman< chmat >::_yp, bdm::Kalman< chmat >::A, bdm::Kalman< chmat >::B, bdm::Kalman< chmat >::C, bdm::Kalman< chmat >::D, bdm::Kalman< chmat >::dimu, bdm::Kalman< chmat >::dimx, bdm::Kalman< chmat >::dimy, bdm::BM::evalll, bdm::eEF::evallog(), bdm::Kalman< chmat >::fy, bdm::BM::ll, postA, and preA.
| virtual double bdm::BM::logpred | ( | const vec & | dt | ) |  const [inline, virtual, inherited] | 
        
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
Referenced by bdm::BM::logpred_m().
 1.5.9