#include <exp_family.h>
| Public Member Functions | |
| vec | sample () const | 
| Returns a sample,  from density  . | |
| vec | mean () const | 
| return expected value | |
| vec | variance () const | 
| return expected variance (not covariance!) | |
| vec | est_theta () const | 
| LS estimate of  . | |
| ldmat | est_theta_cov () const | 
| Covariance of the LS estimate. | |
| void | mean_mat (mat &M, mat &R) const | 
| double | evallog_nn (const vec &val) const | 
| In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise val = [theta_1 theta_2 ... r_1 r_2 ]. | |
| double | lognc () const | 
| logarithm of the normalizing constant,   | |
| void | pow (double p) | 
| Power of the density, used e.g. to flatten the density. | |
| virtual void | dupdate (mat &v) | 
| TODO decide if it is really needed. | |
| virtual double | evallog (const vec &val) const | 
| Evaluate normalized log-probability. | |
| virtual vec | evallog (const mat &Val) const | 
| Evaluate normalized log-probability for many samples. | |
| virtual string | to_string () | 
| This method returns a basic info about the current instance. | |
| virtual void | to_setting (Setting &set) const | 
| This method save all the instance properties into the Setting structure. | |
| virtual void | validate () | 
| This method TODO. | |
| Constructors | |
| egiw () | |
| egiw (int dimx0, ldmat V0, double nu0=-1.0) | |
| void | set_parameters (int dimx0, ldmat V0, double nu0=-1.0) | 
| Access attributes | |
| ldmat & | _V () | 
| const ldmat & | _V () const | 
| double & | _nu () | 
| const double & | _nu () const | 
| void | from_setting (const Setting &set) | 
| Constructors | |
| Construction of each epdf should support two types of constructors:  
 
 set_parameters(). This way references can be initialized in constructors. | |
| void | set_parameters (int dim0) | 
| Matematical Operations | |
| virtual mat | sample_m (int N) const | 
| Returns N samples,  from density  . | |
| virtual vec | evallog_m (const mat &Val) const | 
| Compute log-probability of multiple values argument val. | |
| virtual vec | evallog_m (const Array< vec > &Avec) const | 
| Compute log-probability of multiple values argument val. | |
| virtual mpdf * | condition (const RV &rv) const | 
| Return conditional density on the given RV, the remaining rvs will be in conditioning. | |
| virtual epdf * | marginal (const RV &rv) const | 
| Return marginal density on the given RV, the remainig rvs are intergrated out. | |
| virtual void | qbounds (vec &lb, vec &ub, double percentage=0.95) const | 
| Lower and upper bounds of percentage% quantile, returns mean-2*sigma as default. | |
| Connection to other classes | |
| Description of the random quantity via attribute  rvis optional. For operations such as samplingrvdoes not need to be set. However, formarginalizationandconditioningrvhas to be set. NB: | |
| void | set_rv (const RV &rv0) | 
| Name its rv. | |
| bool | isnamed () const | 
| True if rv is assigned. | |
| const RV & | _rv () const | 
| Return name (fails when isnamed is false). | |
| Access to attributes | |
| int | dimension () const | 
| Size of the random variable. | |
| Protected Attributes | |
| ldmat | V | 
| Extended information matrix of sufficient statistics. | |
| double | nu | 
| Number of data records (degrees of freedom) of sufficient statistics. | |
| int | dimx | 
| Dimension of the output. | |
| int | nPsi | 
| Dimension of the regressor. | |
| int | dim | 
| dimension of the random variable | |
| RV | rv | 
| Description of the random variable. | |
For  -variate densities, given rv.count() should be
-variate densities, given rv.count() should be  V.rows().
 V.rows(). 
| void bdm::egiw::from_setting | ( | const Setting & | set | ) |  [inline, virtual] | 
Load from structure with elements:
 { rv = {class="RV", names=(...),}; // RV describing meaning of random variable
   // elements of offsprings
 }
Reimplemented from bdm::epdf.
References dimx, bdm::UI::get(), nu, bdm::epdf::rv, and bdm::epdf::set_rv().
 1.5.9
 1.5.9