00001
00013 #ifndef EF_H
00014 #define EF_H
00015
00016
00017 #include "../shared_ptr.h"
00018 #include "../base/bdmbase.h"
00019 #include "../math/chmat.h"
00020
00021 namespace bdm
00022 {
00023
00024
00026 extern Uniform_RNG UniRNG;
00028 extern Normal_RNG NorRNG;
00030 extern Gamma_RNG GamRNG;
00031
00038 class eEF : public epdf
00039 {
00040 public:
00041
00043 eEF () : epdf () {};
00045 virtual double lognc() const = 0;
00046
00048 virtual double evallog_nn (const vec &val) const {
00049 bdm_error ("Not implemented");
00050 return 0.0;
00051 }
00052
00054 virtual double evallog (const vec &val) const {
00055 double tmp;
00056 tmp = evallog_nn (val) - lognc();
00057 return tmp;
00058 }
00060 virtual vec evallog_m (const mat &Val) const {
00061 vec x (Val.cols());
00062 for (int i = 0;i < Val.cols();i++) {x (i) = evallog_nn (Val.get_col (i)) ;}
00063 return x -lognc();
00064 }
00066 virtual vec evallog_m (const Array<vec> &Val) const {
00067 vec x (Val.length());
00068 for (int i = 0;i < Val.length();i++) {x (i) = evallog_nn (Val (i)) ;}
00069 return x -lognc();
00070 }
00071
00073 virtual void pow (double p) {
00074 bdm_error ("Not implemented");
00075 }
00076 };
00077
00078
00080 class BMEF : public BM
00081 {
00082 protected:
00084 double frg;
00086 double last_lognc;
00087 public:
00089 BMEF (double frg0 = 1.0) : BM (), frg (frg0) {}
00091 BMEF (const BMEF &B) : BM (B), frg (B.frg), last_lognc (B.last_lognc) {}
00093 virtual void set_statistics (const BMEF* BM0) {
00094 bdm_error ("Not implemented");
00095 }
00096
00098 virtual void bayes (const vec &data, const double w) {};
00099
00100 void bayes (const vec &dt);
00101
00103 virtual void flatten (const BMEF * B) {
00104 bdm_error ("Not implemented");
00105 }
00106
00107 BMEF* _copy_ () const {
00108 bdm_error ("function _copy_ not implemented for this BM");
00109 return NULL;
00110 }
00111 };
00112
00113 template<class sq_T, template <typename> class TEpdf>
00114 class mlnorm;
00115
00121 template<class sq_T>
00122 class enorm : public eEF
00123 {
00124 protected:
00126 vec mu;
00128 sq_T R;
00129 public:
00132
00133 enorm () : eEF (), mu (), R () {};
00134 enorm (const vec &mu, const sq_T &R) {set_parameters (mu, R);}
00135 void set_parameters (const vec &mu, const sq_T &R);
00136 void from_setting (const Setting &root);
00137 void validate() {
00138 bdm_assert_debug (mu.length() == R.rows(), "parameters mismatch");
00139 dim = mu.length();
00140 }
00142
00145
00147 void dupdate (mat &v, double nu = 1.0);
00148
00149 vec sample() const;
00150
00151 double evallog_nn (const vec &val) const;
00152 double lognc () const;
00153 vec mean() const {return mu;}
00154 vec variance() const {return diag (R.to_mat());}
00155
00156 shared_ptr<mpdf> condition ( const RV &rvn ) const;
00157
00158
00159
00160
00161
00162 void condition ( const RV &rvn, mpdf &target ) const;
00163
00164 shared_ptr<epdf> marginal (const RV &rvn ) const;
00165 void marginal ( const RV &rvn, enorm<sq_T> &target ) const;
00167
00170
00171 vec& _mu() {return mu;}
00172 const vec& _mu() const {return mu;}
00173 void set_mu (const vec mu0) { mu = mu0;}
00174 sq_T& _R() {return R;}
00175 const sq_T& _R() const {return R;}
00177
00178 };
00179 UIREGISTER2 (enorm, chmat);
00180 SHAREDPTR2 ( enorm, chmat );
00181 UIREGISTER2 (enorm, ldmat);
00182 SHAREDPTR2 ( enorm, ldmat );
00183 UIREGISTER2 (enorm, fsqmat);
00184 SHAREDPTR2 ( enorm, fsqmat );
00185
00186
00193 class egiw : public eEF
00194 {
00195 protected:
00197 ldmat V;
00199 double nu;
00201 int dimx;
00203 int nPsi;
00204 public:
00207 egiw() : eEF() {};
00208 egiw (int dimx0, ldmat V0, double nu0 = -1.0) : eEF() {set_parameters (dimx0, V0, nu0);};
00209
00210 void set_parameters (int dimx0, ldmat V0, double nu0 = -1.0) {
00211 dimx = dimx0;
00212 nPsi = V0.rows() - dimx;
00213 dim = dimx * (dimx + nPsi);
00214
00215 V = V0;
00216 if (nu0 < 0) {
00217 nu = 0.1 + nPsi + 2 * dimx + 2;
00218
00219 } else {
00220 nu = nu0;
00221 }
00222 }
00224
00225 vec sample() const;
00226 vec mean() const;
00227 vec variance() const;
00228
00230 vec est_theta() const;
00231
00233 ldmat est_theta_cov() const;
00234
00236 void mean_mat (mat &M, mat&R) const;
00238 double evallog_nn (const vec &val) const;
00239 double lognc () const;
00240 void pow (double p) {V *= p;nu *= p;};
00241
00244
00245 ldmat& _V() {return V;}
00246 const ldmat& _V() const {return V;}
00247 double& _nu() {return nu;}
00248 const double& _nu() const {return nu;}
00249 void from_setting (const Setting &set) {
00250 UI::get (nu, set, "nu", UI::compulsory);
00251 UI::get (dimx, set, "dimx", UI::compulsory);
00252 mat V;
00253 UI::get (V, set, "V", UI::compulsory);
00254 set_parameters (dimx, V, nu);
00255 shared_ptr<RV> rv = UI::build<RV> (set, "rv", UI::compulsory);
00256 set_rv (*rv);
00257 }
00259 };
00260 UIREGISTER ( egiw );
00261 SHAREDPTR ( egiw );
00262
00271 class eDirich: public eEF
00272 {
00273 protected:
00275 vec beta;
00276 public:
00279
00280 eDirich () : eEF () {};
00281 eDirich (const eDirich &D0) : eEF () {set_parameters (D0.beta);};
00282 eDirich (const vec &beta0) {set_parameters (beta0);};
00283 void set_parameters (const vec &beta0) {
00284 beta = beta0;
00285 dim = beta.length();
00286 }
00288
00289 vec sample() const {
00290 bdm_error ("Not implemented");
00291 return vec();
00292 }
00293
00294 vec mean() const {return beta / sum (beta);};
00295 vec variance() const {double gamma = sum (beta); return elem_mult (beta, (beta + 1)) / (gamma* (gamma + 1));}
00297 double evallog_nn (const vec &val) const {
00298 double tmp; tmp = (beta - 1) * log (val);
00299 return tmp;
00300 }
00301
00302 double lognc () const {
00303 double tmp;
00304 double gam = sum (beta);
00305 double lgb = 0.0;
00306 for (int i = 0;i < beta.length();i++) {lgb += lgamma (beta (i));}
00307 tmp = lgb - lgamma (gam);
00308 return tmp;
00309 }
00310
00312 vec& _beta() {return beta;}
00314 };
00315
00317 class multiBM : public BMEF
00318 {
00319 protected:
00321 eDirich est;
00323 vec β
00324 public:
00326 multiBM () : BMEF (), est (), beta (est._beta()) {
00327 if (beta.length() > 0) {last_lognc = est.lognc();}
00328 else{last_lognc = 0.0;}
00329 }
00331 multiBM (const multiBM &B) : BMEF (B), est (B.est), beta (est._beta()) {}
00333 void set_statistics (const BM* mB0) {const multiBM* mB = dynamic_cast<const multiBM*> (mB0); beta = mB->beta;}
00334 void bayes (const vec &dt) {
00335 if (frg < 1.0) {beta *= frg;last_lognc = est.lognc();}
00336 beta += dt;
00337 if (evalll) {ll = est.lognc() - last_lognc;}
00338 }
00339 double logpred (const vec &dt) const {
00340 eDirich pred (est);
00341 vec &beta = pred._beta();
00342
00343 double lll;
00344 if (frg < 1.0)
00345 {beta *= frg;lll = pred.lognc();}
00346 else
00347 if (evalll) {lll = last_lognc;}
00348 else{lll = pred.lognc();}
00349
00350 beta += dt;
00351 return pred.lognc() - lll;
00352 }
00353 void flatten (const BMEF* B) {
00354 const multiBM* E = dynamic_cast<const multiBM*> (B);
00355
00356 const vec &Eb = E->beta;
00357 beta *= (sum (Eb) / sum (beta));
00358 if (evalll) {last_lognc = est.lognc();}
00359 }
00361 const eDirich& posterior() const {return est;};
00363 void set_parameters (const vec &beta0) {
00364 est.set_parameters (beta0);
00365 if (evalll) {last_lognc = est.lognc();}
00366 }
00367 };
00368
00378 class egamma : public eEF
00379 {
00380 protected:
00382 vec alpha;
00384 vec beta;
00385 public :
00388 egamma () : eEF (), alpha (0), beta (0) {};
00389 egamma (const vec &a, const vec &b) {set_parameters (a, b);};
00390 void set_parameters (const vec &a, const vec &b) {alpha = a, beta = b;dim = alpha.length();};
00392
00393 vec sample() const;
00394 double evallog (const vec &val) const;
00395 double lognc () const;
00397 vec& _alpha() {return alpha;}
00399 vec& _beta() {return beta;}
00400 vec mean() const {return elem_div (alpha, beta);}
00401 vec variance() const {return elem_div (alpha, elem_mult (beta, beta)); }
00402
00411 void from_setting (const Setting &set) {
00412 epdf::from_setting (set);
00413 UI::get (alpha, set, "alpha", UI::compulsory);
00414 UI::get (beta, set, "beta", UI::compulsory);
00415 validate();
00416 }
00417 void validate() {
00418 bdm_assert_debug (alpha.length() == beta.length(), "parameters do not match");
00419 dim = alpha.length();
00420 }
00421 };
00422 UIREGISTER (egamma);
00423 SHAREDPTR ( egamma );
00424
00441 class eigamma : public egamma
00442 {
00443 protected:
00444 public :
00449
00450 vec sample() const {return 1.0 / egamma::sample();};
00452 vec mean() const {return elem_div (beta, alpha - 1);}
00453 vec variance() const {vec mea = mean(); return elem_div (elem_mult (mea, mea), alpha - 2);}
00454 };
00455
00457
00458
00459
00460
00461
00462
00464
00465
00466
00467
00468
00469
00471
00472 class euni: public epdf
00473 {
00474 protected:
00476 vec low;
00478 vec high;
00480 vec distance;
00482 double nk;
00484 double lnk;
00485 public:
00488 euni () : epdf () {}
00489 euni (const vec &low0, const vec &high0) {set_parameters (low0, high0);}
00490 void set_parameters (const vec &low0, const vec &high0) {
00491 distance = high0 - low0;
00492 bdm_assert_debug (min (distance) > 0.0, "bad support");
00493 low = low0;
00494 high = high0;
00495 nk = prod (1.0 / distance);
00496 lnk = log (nk);
00497 dim = low.length();
00498 }
00500
00501 double evallog (const vec &val) const {
00502 if (any (val < low) && any (val > high)) {return inf;}
00503 else return lnk;
00504 }
00505 vec sample() const {
00506 vec smp (dim);
00507 #pragma omp critical
00508 UniRNG.sample_vector (dim , smp);
00509 return low + elem_mult (distance, smp);
00510 }
00512 vec mean() const {return (high -low) / 2.0;}
00513 vec variance() const {return (pow (high, 2) + pow (low, 2) + elem_mult (high, low)) / 3.0;}
00522 void from_setting (const Setting &set) {
00523 epdf::from_setting (set);
00524
00525 UI::get (high, set, "high", UI::compulsory);
00526 UI::get (low, set, "low", UI::compulsory);
00527 }
00528 };
00529
00530
00536 template < class sq_T, template <typename> class TEpdf = enorm >
00537 class mlnorm : public mpdf_internal< TEpdf<sq_T> >
00538 {
00539 protected:
00541 mat A;
00543 vec mu_const;
00544
00545 public:
00548 mlnorm() : mpdf_internal< TEpdf<sq_T> >() {};
00549 mlnorm (const mat &A, const vec &mu0, const sq_T &R) : mpdf_internal< TEpdf<sq_T> >() {
00550 set_parameters (A, mu0, R);
00551 }
00552
00554 void set_parameters (const mat &A0, const vec &mu0, const sq_T &R0) {
00555 bdm_assert_debug (A0.rows() == mu0.length(), "mlnorm: A vs. mu mismatch");
00556 bdm_assert_debug (A0.rows() == R0.rows(), "mlnorm: A vs. R mismatch");
00557
00558 this->iepdf.set_parameters (zeros (A0.rows()), R0);
00559 A = A0;
00560 mu_const = mu0;
00561 this->dimc = A0.cols();
00562 }
00565 void condition (const vec &cond) {
00566 this->iepdf._mu() = A * cond + mu_const;
00567
00568 }
00569
00571 vec& _mu_const() {return mu_const;}
00573 mat& _A() {return A;}
00575 mat _R() { return this->iepdf._R().to_mat(); }
00576
00578 template<typename sq_M>
00579 friend std::ostream &operator<< (std::ostream &os, mlnorm<sq_M, enorm> &ml);
00580
00581 void from_setting (const Setting &set) {
00582 mpdf::from_setting (set);
00583
00584 UI::get (A, set, "A", UI::compulsory);
00585 UI::get (mu_const, set, "const", UI::compulsory);
00586 mat R0;
00587 UI::get (R0, set, "R", UI::compulsory);
00588 set_parameters (A, mu_const, R0);
00589 };
00590 };
00591 UIREGISTER2 (mlnorm,ldmat);
00592 SHAREDPTR2 ( mlnorm, ldmat );
00593 UIREGISTER2 (mlnorm,fsqmat);
00594 SHAREDPTR2 ( mlnorm, fsqmat );
00595 UIREGISTER2 (mlnorm, chmat);
00596 SHAREDPTR2 ( mlnorm, chmat );
00597
00599 template<class sq_T>
00600 class mgnorm : public mpdf_internal< enorm< sq_T > >
00601 {
00602 private:
00603
00604 shared_ptr<fnc> g;
00605
00606 public:
00608 mgnorm() : mpdf_internal<enorm<sq_T> >() { }
00610 inline void set_parameters (const shared_ptr<fnc> &g0, const sq_T &R0);
00611 inline void condition (const vec &cond);
00612
00613
00641 void from_setting (const Setting &set) {
00642 shared_ptr<fnc> g = UI::build<fnc> (set, "g", UI::compulsory);
00643
00644 mat R;
00645 vec dR;
00646 if (UI::get (dR, set, "dR"))
00647 R = diag (dR);
00648 else
00649 UI::get (R, set, "R", UI::compulsory);
00650
00651 set_parameters (g, R);
00652 }
00653 };
00654
00655 UIREGISTER2 (mgnorm, chmat);
00656 SHAREDPTR2 ( mgnorm, chmat );
00657
00658
00666 class mlstudent : public mlnorm<ldmat, enorm>
00667 {
00668 protected:
00670 ldmat Lambda;
00672 ldmat &_R;
00674 ldmat Re;
00675 public:
00676 mlstudent () : mlnorm<ldmat, enorm> (),
00677 Lambda (), _R (iepdf._R()) {}
00679 void set_parameters (const mat &A0, const vec &mu0, const ldmat &R0, const ldmat& Lambda0) {
00680 bdm_assert_debug (A0.rows() == mu0.length(), "mlstudent: A vs. mu mismatch");
00681 bdm_assert_debug (R0.rows() == A0.rows(), "mlstudent: A vs. R mismatch");
00682
00683 iepdf.set_parameters (mu0, R0);
00684 A = A0;
00685 mu_const = mu0;
00686 Re = R0;
00687 Lambda = Lambda0;
00688 }
00689 void condition (const vec &cond) {
00690 iepdf._mu() = A * cond + mu_const;
00691 double zeta;
00692
00693 if ( (cond.length() + 1) == Lambda.rows()) {
00694 zeta = Lambda.invqform (concat (cond, vec_1 (1.0)));
00695 } else {
00696 zeta = Lambda.invqform (cond);
00697 }
00698 _R = Re;
00699 _R *= (1 + zeta);
00700 };
00701
00702 };
00712 class mgamma : public mpdf_internal<egamma>
00713 {
00714 protected:
00715
00717 double k;
00718
00720 vec &_beta;
00721
00722 public:
00724 mgamma() : mpdf_internal<egamma>(), k (0),
00725 _beta (iepdf._beta()) {
00726 }
00727
00729 void set_parameters (double k, const vec &beta0);
00730
00731 void condition (const vec &val) {_beta = k / val;};
00741 void from_setting (const Setting &set) {
00742 mpdf::from_setting (set);
00743 vec betatmp;
00744 UI::get (betatmp, set, "beta", UI::compulsory);
00745 UI::get (k, set, "k", UI::compulsory);
00746 set_parameters (k, betatmp);
00747 }
00748 };
00749 UIREGISTER (mgamma);
00750 SHAREDPTR (mgamma);
00751
00761 class migamma : public mpdf_internal<eigamma>
00762 {
00763 protected:
00765 double k;
00766
00768 vec &_alpha;
00769
00771 vec &_beta;
00772
00773 public:
00776 migamma() : mpdf_internal<eigamma>(),
00777 k (0),
00778 _alpha (iepdf._alpha()),
00779 _beta (iepdf._beta()) {
00780 }
00781
00782 migamma (const migamma &m) : mpdf_internal<eigamma>(),
00783 k (0),
00784 _alpha (iepdf._alpha()),
00785 _beta (iepdf._beta()) {
00786 }
00788
00790 void set_parameters (int len, double k0) {
00791 k = k0;
00792 iepdf.set_parameters ( (1.0 / (k*k) + 2.0) *ones (len) , ones (len) );
00793 dimc = dimension();
00794 };
00795 void condition (const vec &val) {
00796 _beta = elem_mult (val, (_alpha - 1.0));
00797 };
00798 };
00799
00800
00812 class mgamma_fix : public mgamma
00813 {
00814 protected:
00816 double l;
00818 vec refl;
00819 public:
00821 mgamma_fix () : mgamma (), refl () {};
00823 void set_parameters (double k0 , vec ref0, double l0) {
00824 mgamma::set_parameters (k0, ref0);
00825 refl = pow (ref0, 1.0 - l0);l = l0;
00826 dimc = dimension();
00827 };
00828
00829 void condition (const vec &val) {vec mean = elem_mult (refl, pow (val, l)); _beta = k / mean;};
00830 };
00831
00832
00845 class migamma_ref : public migamma
00846 {
00847 protected:
00849 double l;
00851 vec refl;
00852 public:
00854 migamma_ref () : migamma (), refl () {};
00856 void set_parameters (double k0 , vec ref0, double l0) {
00857 migamma::set_parameters (ref0.length(), k0);
00858 refl = pow (ref0, 1.0 - l0);
00859 l = l0;
00860 dimc = dimension();
00861 };
00862
00863 void condition (const vec &val) {
00864 vec mean = elem_mult (refl, pow (val, l));
00865 migamma::condition (mean);
00866 };
00867
00888 void from_setting (const Setting &set);
00889
00890
00891 };
00892
00893
00894 UIREGISTER (migamma_ref);
00895 SHAREDPTR (migamma_ref);
00896
00906 class elognorm: public enorm<ldmat>
00907 {
00908 public:
00909 vec sample() const {return exp (enorm<ldmat>::sample());};
00910 vec mean() const {vec var = enorm<ldmat>::variance();return exp (mu - 0.5*var);};
00911
00912 };
00913
00925 class mlognorm : public mpdf_internal<elognorm>
00926 {
00927 protected:
00929 double sig2;
00930
00932 vec μ
00933 public:
00935 mlognorm() : mpdf_internal<elognorm>(),
00936 sig2 (0),
00937 mu (iepdf._mu()) {
00938 }
00939
00941 void set_parameters (int size, double k) {
00942 sig2 = 0.5 * log (k * k + 1);
00943 iepdf.set_parameters (zeros (size), 2*sig2*eye (size));
00944
00945 dimc = size;
00946 };
00947
00948 void condition (const vec &val) {
00949 mu = log (val) - sig2;
00950 };
00951
00970 void from_setting (const Setting &set);
00971
00972
00973
00974 };
00975
00976 UIREGISTER (mlognorm);
00977 SHAREDPTR (mlognorm);
00978
00982 class eWishartCh : public epdf
00983 {
00984 protected:
00986 chmat Y;
00988 int p;
00990 double delta;
00991 public:
00993 void set_parameters (const mat &Y0, const double delta0) {Y = chmat (Y0);delta = delta0; p = Y.rows(); dim = p * p; }
00995 mat sample_mat() const {
00996 mat X = zeros (p, p);
00997
00998
00999 for (int i = 0;i < p;i++) {
01000 GamRNG.setup (0.5* (delta - i) , 0.5);
01001 #pragma omp critical
01002 X (i, i) = sqrt (GamRNG());
01003 }
01004
01005 for (int i = 0;i < p;i++) {
01006 for (int j = i + 1;j < p;j++) {
01007 #pragma omp critical
01008 X (i, j) = NorRNG.sample();
01009 }
01010 }
01011 return X*Y._Ch();
01012 }
01013 vec sample () const {
01014 return vec (sample_mat()._data(), p*p);
01015 }
01017 void setY (const mat &Ch0) {copy_vector (dim, Ch0._data(), Y._Ch()._data());}
01019 void _setY (const vec &ch0) {copy_vector (dim, ch0._data(), Y._Ch()._data()); }
01021 const chmat& getY() const {return Y;}
01022 };
01023
01025
01027 class eiWishartCh: public epdf
01028 {
01029 protected:
01031 eWishartCh W;
01033 int p;
01035 double delta;
01036 public:
01038 void set_parameters (const mat &Y0, const double delta0) {
01039 delta = delta0;
01040 W.set_parameters (inv (Y0), delta0);
01041 dim = W.dimension(); p = Y0.rows();
01042 }
01043 vec sample() const {mat iCh; iCh = inv (W.sample_mat()); return vec (iCh._data(), dim);}
01045 void _setY (const vec &y0) {
01046 mat Ch (p, p);
01047 mat iCh (p, p);
01048 copy_vector (dim, y0._data(), Ch._data());
01049
01050 iCh = inv (Ch);
01051 W.setY (iCh);
01052 }
01053 virtual double evallog (const vec &val) const {
01054 chmat X (p);
01055 const chmat& Y = W.getY();
01056
01057 copy_vector (p*p, val._data(), X._Ch()._data());
01058 chmat iX (p);X.inv (iX);
01059
01060
01061 mat M = Y.to_mat() * iX.to_mat();
01062
01063 double log1 = 0.5 * p * (2 * Y.logdet()) - 0.5 * (delta + p + 1) * (2 * X.logdet()) - 0.5 * trace (M);
01064
01065
01066
01067
01068
01069
01070
01071
01072
01073 return log1;
01074 };
01075
01076 };
01077
01079 class rwiWishartCh : public mpdf_internal<eiWishartCh>
01080 {
01081 protected:
01083 double sqd;
01085 vec refl;
01087 double l;
01089 int p;
01090
01091 public:
01092 rwiWishartCh() : sqd (0), l (0), p (0) {}
01094 void set_parameters (int p0, double k, vec ref0, double l0) {
01095 p = p0;
01096 double delta = 2 / (k * k) + p + 3;
01097 sqd = sqrt (delta - p - 1);
01098 l = l0;
01099 refl = pow (ref0, 1 - l);
01100
01101 iepdf.set_parameters (eye (p), delta);
01102 dimc = iepdf.dimension();
01103 }
01104 void condition (const vec &c) {
01105 vec z = c;
01106 int ri = 0;
01107 for (int i = 0;i < p*p;i += (p + 1)) {
01108 z (i) = pow (z (i), l) * refl (ri);
01109 ri++;
01110 }
01111
01112 iepdf._setY (sqd*z);
01113 }
01114 };
01115
01117 enum RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
01123 class eEmp: public epdf
01124 {
01125 protected :
01127 int n;
01129 vec w;
01131 Array<vec> samples;
01132 public:
01135 eEmp () : epdf (), w (), samples () {};
01137 eEmp (const eEmp &e) : epdf (e), w (e.w), samples (e.samples) {};
01139
01141 void set_statistics (const vec &w0, const epdf &pdf0);
01143 void set_statistics (const epdf &pdf0 , int n) {set_statistics (ones (n) / n, pdf0);};
01145 void set_samples (const epdf* pdf0);
01147 void set_parameters (int n0, bool copy = true) {n = n0; w.set_size (n0, copy);samples.set_size (n0, copy);};
01149 void set_parameters (const Array<vec> &Av) {
01150 bdm_assert_debug(Av.size()>0,"Empty samples");
01151 n = Av.size();
01152 epdf::set_parameters(Av(0).length());
01153 w=1/n*ones(n);
01154 samples=Av;
01155 };
01157 vec& _w() {return w;};
01159 const vec& _w() const {return w;};
01161 Array<vec>& _samples() {return samples;};
01163 const Array<vec>& _samples() const {return samples;};
01165 ivec resample (RESAMPLING_METHOD method = SYSTEMATIC);
01166
01168 vec sample() const {
01169 bdm_error ("Not implemented");
01170 return vec();
01171 }
01172
01174 double evallog (const vec &val) const {
01175 bdm_error ("Not implemented");
01176 return 0.0;
01177 }
01178
01179 vec mean() const {
01180 vec pom = zeros (dim);
01181 for (int i = 0;i < n;i++) {pom += samples (i) * w (i);}
01182 return pom;
01183 }
01184 vec variance() const {
01185 vec pom = zeros (dim);
01186 for (int i = 0;i < n;i++) {pom += pow (samples (i), 2) * w (i);}
01187 return pom -pow (mean(), 2);
01188 }
01190 void qbounds (vec &lb, vec &ub, double perc = 0.95) const {
01191
01192 lb.set_size (dim);
01193 ub.set_size (dim);
01194 lb = std::numeric_limits<double>::infinity();
01195 ub = -std::numeric_limits<double>::infinity();
01196 int j;
01197 for (int i = 0;i < n;i++) {
01198 for (j = 0;j < dim; j++) {
01199 if (samples (i) (j) < lb (j)) {lb (j) = samples (i) (j);}
01200 if (samples (i) (j) > ub (j)) {ub (j) = samples (i) (j);}
01201 }
01202 }
01203 }
01204 };
01205
01206
01208
01209 template<class sq_T>
01210 void enorm<sq_T>::set_parameters (const vec &mu0, const sq_T &R0)
01211 {
01212
01213 mu = mu0;
01214 R = R0;
01215 validate();
01216 };
01217
01218 template<class sq_T>
01219 void enorm<sq_T>::from_setting (const Setting &set)
01220 {
01221 epdf::from_setting (set);
01222
01223 UI::get (mu, set, "mu", UI::compulsory);
01224 mat Rtmp;
01225 UI::get (Rtmp, set, "R", UI::compulsory);
01226 R = Rtmp;
01227 validate();
01228 }
01229
01230 template<class sq_T>
01231 void enorm<sq_T>::dupdate (mat &v, double nu)
01232 {
01233
01234 };
01235
01236
01237
01238
01239
01240
01241 template<class sq_T>
01242 vec enorm<sq_T>::sample() const
01243 {
01244 vec x (dim);
01245 #pragma omp critical
01246 NorRNG.sample_vector (dim, x);
01247 vec smp = R.sqrt_mult (x);
01248
01249 smp += mu;
01250 return smp;
01251 };
01252
01253
01254
01255
01256
01257
01258
01259
01260
01261 template<class sq_T>
01262 double enorm<sq_T>::evallog_nn (const vec &val) const
01263 {
01264
01265 double tmp = -0.5 * (R.invqform (mu - val));
01266 return tmp;
01267 };
01268
01269 template<class sq_T>
01270 inline double enorm<sq_T>::lognc () const
01271 {
01272
01273 double tmp = 0.5 * (R.cols() * 1.83787706640935 + R.logdet());
01274 return tmp;
01275 };
01276
01277
01278
01279
01280
01281
01282
01283
01284
01285
01286
01287
01288
01289
01290
01291
01292
01293
01294
01295
01296
01297
01298
01299
01300
01301
01302
01303
01304 template<class sq_T>
01305 shared_ptr<epdf> enorm<sq_T>::marginal ( const RV &rvn ) const
01306 {
01307 enorm<sq_T> *tmp = new enorm<sq_T> ();
01308 shared_ptr<epdf> narrow(tmp);
01309 marginal ( rvn, *tmp );
01310 return narrow;
01311 }
01312
01313 template<class sq_T>
01314 void enorm<sq_T>::marginal ( const RV &rvn, enorm<sq_T> &target ) const
01315 {
01316 bdm_assert_debug (isnamed(), "rv description is not assigned");
01317 ivec irvn = rvn.dataind (rv);
01318
01319 sq_T Rn (R, irvn);
01320
01321 target.set_rv ( rvn );
01322 target.set_parameters (mu (irvn), Rn);
01323 }
01324
01325 template<class sq_T>
01326 shared_ptr<mpdf> enorm<sq_T>::condition ( const RV &rvn ) const
01327 {
01328 mlnorm<sq_T> *tmp = new mlnorm<sq_T> ();
01329 shared_ptr<mpdf> narrow(tmp);
01330 condition ( rvn, *tmp );
01331 return narrow;
01332 }
01333
01334 template<class sq_T>
01335 void enorm<sq_T>::condition ( const RV &rvn, mpdf &target ) const
01336 {
01337 typedef mlnorm<sq_T> TMlnorm;
01338
01339 bdm_assert_debug (isnamed(), "rvs are not assigned");
01340 TMlnorm &uptarget = dynamic_cast<TMlnorm &>(target);
01341
01342 RV rvc = rv.subt (rvn);
01343 bdm_assert_debug ( (rvc._dsize() + rvn._dsize() == rv._dsize()), "wrong rvn");
01344
01345 ivec irvn = rvn.dataind (rv);
01346 ivec irvc = rvc.dataind (rv);
01347 ivec perm = concat (irvn , irvc);
01348 sq_T Rn (R, perm);
01349
01350
01351 mat S = Rn.to_mat();
01352
01353 int n = rvn._dsize() - 1;
01354 int end = R.rows() - 1;
01355 mat S11 = S.get (0, n, 0, n);
01356 mat S12 = S.get (0, n , rvn._dsize(), end);
01357 mat S22 = S.get (rvn._dsize(), end, rvn._dsize(), end);
01358
01359 vec mu1 = mu (irvn);
01360 vec mu2 = mu (irvc);
01361 mat A = S12 * inv (S22);
01362 sq_T R_n (S11 - A *S12.T());
01363
01364 uptarget.set_rv (rvn);
01365 uptarget.set_rvc (rvc);
01366 uptarget.set_parameters (A, mu1 - A*mu2, R_n);
01367 }
01368
01371 template<class sq_T>
01372 void mgnorm<sq_T >::set_parameters (const shared_ptr<fnc> &g0, const sq_T &R0) {
01373 g = g0;
01374 this->iepdf.set_parameters (zeros (g->dimension()), R0);
01375 }
01376
01377 template<class sq_T>
01378 void mgnorm<sq_T >::condition (const vec &cond) {this->iepdf._mu() = g->eval (cond);};
01379
01381 template<class sq_T>
01382 std::ostream &operator<< (std::ostream &os, mlnorm<sq_T> &ml)
01383 {
01384 os << "A:" << ml.A << endl;
01385 os << "mu:" << ml.mu_const << endl;
01386 os << "R:" << ml._R() << endl;
01387 return os;
01388 };
01389
01390 }
01391 #endif //EF_H