Extended Kalman Filter in Square root. More...
#include <kalman.h>
| Public Member Functions | |
| BM * | _copy_ () const | 
| copy constructor duplicated - calls different set_parameters | |
| void | set_parameters (const shared_ptr< diffbifn > &pfxu, const shared_ptr< diffbifn > &phxu, const chmat Q0, const chmat R0) | 
| Set nonlinear functions for mean values and covariance matrices. | |
| void | bayes (const vec &dt) | 
| Here dt = [yt;ut] of appropriate dimensions. | |
| void | from_setting (const Setting &set) | 
| load basic elements of Kalman from structure | |
| void | set_parameters (const mat &A0, const mat &B0, const mat &C0, const mat &D0, const chmat &Q0, const chmat &R0) | 
| set parameters for adapt from Kalman | |
| void | initialize () | 
| initialize internal parametetrs | |
| void | set_statistics (const vec &mu0, const mat &P0) | 
| void | set_statistics (const vec &mu0, const chmat &P0) | 
| const enorm< chmat > & | posterior () const | 
| posterior | |
| shared_ptr< epdf > | shared_posterior () | 
| shared posterior | |
| void | validate () | 
| virtual string | to_string () | 
| This method returns a basic info about the current instance. | |
| virtual void | to_setting (Setting &set) const | 
| This method save all the instance properties into the Setting structure. | |
| int | _dimx () | 
| access function | |
| int | _dimy () | 
| access function | |
| int | _dimu () | 
| access function | |
| mat | _A () | 
| access function | |
| mat | _B () | 
| access function | |
| mat | _C () | 
| access function | |
| mat | _D () | 
| access function | |
| chmat | _Q () | 
| access function | |
| chmat | _R () | 
| access function | |
| Mathematical operations | |
| virtual void | bayesB (const mat &Dt) | 
| Batch Bayes rule (columns of Dt are observations). | |
| virtual double | logpred (const vec &dt) const | 
| vec | logpred_m (const mat &dt) const | 
| Matrix version of logpred. | |
| virtual epdf * | epredictor () const | 
| Constructs a predictive density  . | |
| virtual mpdf * | predictor () const | 
| Constructs conditional density of 1-step ahead predictor  . | |
| Access to attributes | |
| const RV & | _drv () const | 
| void | set_drv (const RV &rv) | 
| void | set_rv (const RV &rv) | 
| double | _ll () const | 
| void | set_evalll (bool evl0) | 
| Protected Attributes | |
| shared_ptr< diffbifn > | pfxu | 
| Internal Model f(x,u). | |
| shared_ptr< diffbifn > | phxu | 
| Observation Model h(x,u). | |
| RV | yrv | 
| id of output | |
| RV | urv | 
| id of input | |
| mat | _K | 
| Kalman gain. | |
| shared_ptr< enorm< chmat > > | est | 
| posterior | |
| enorm< chmat > | fy | 
| marginal on data f(y|y) | |
| RV | drv | 
| Random variable of the data (optional). | |
| double | ll | 
| Logarithm of marginalized data likelihood. | |
| bool | evalll | 
| If true, the filter will compute likelihood of the data record and store it in ll. Set to false if you want to save computational time. | |
| int | dimx | 
| cache of rv.count() | |
| int | dimy | 
| cache of rvy.count() | |
| int | dimu | 
| cache of rvu.count() | |
| mat | A | 
| Matrix A. | |
| mat | B | 
| Matrix B. | |
| mat | C | 
| Matrix C. | |
| mat | D | 
| Matrix D. | |
| chmat | Q | 
| Matrix Q in square-root form. | |
| chmat | R | 
| Matrix R in square-root form. | |
| Internal storage - needs initialize() | |
| mat | preA | 
| mat | postA | 
| post array (triangular matrix) | |
| Extension to conditional BM | |
| This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed | |
| const RV & | _rvc () const | 
| access function | |
| virtual void | condition (const vec &val) | 
| Substitute valforrvc. | |
| RV | rvc | 
| Name of extension variable. | |
| Logging of results | |
|  | |
| virtual void | set_options (const string &opt) | 
| Set boolean options from a string, recognized are: "logbounds,logll". | |
| virtual void | log_add (logger &L, const string &name="") | 
| Add all logged variables to a logger. | |
| virtual void | logit (logger &L) | 
| ivec | LIDs | 
| IDs of storages in loggers 4:[1=mean,2=lb,3=ub,4=ll]. | |
| ivec | LFlags | 
| Flags for logging - same size as LIDs, each entry correspond to the same in LIDs. | |
Extended Kalman Filter in Square root.
An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean.
| virtual double bdm::BM::logpred | ( | const vec & | dt | ) | const  [inline, virtual, inherited] | 
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
References bdm_error.
Referenced by bdm::BM::logpred_m().
 1.6.1
 1.6.1