00001 
00013 #ifndef EF_H
00014 #define EF_H
00015 
00016 
00017 #include "../shared_ptr.h"
00018 #include "../base/bdmbase.h"
00019 #include "../math/chmat.h"
00020 
00021 namespace bdm
00022 {
00023 
00024 
00026 extern Uniform_RNG UniRNG;
00028 extern Normal_RNG NorRNG;
00030 extern Gamma_RNG GamRNG;
00031 
00038 class eEF : public epdf
00039 {
00040         public:
00041 
00043                 eEF () : epdf () {};
00045                 virtual double lognc() const = 0;
00046 
00048                 virtual double evallog_nn (const vec &val) const {
00049                         bdm_error ("Not implemented");
00050                         return 0.0;
00051                 }
00052 
00054                 virtual double evallog (const vec &val) const {
00055                         double tmp;
00056                         tmp = evallog_nn (val) - lognc();
00057                         return tmp;
00058                 }
00060                 virtual vec evallog_m (const mat &Val) const {
00061                         vec x (Val.cols());
00062                         for (int i = 0;i < Val.cols();i++) {x (i) = evallog_nn (Val.get_col (i)) ;}
00063                         return x -lognc();
00064                 }
00066                 virtual vec evallog_m (const Array<vec> &Val) const {
00067                         vec x (Val.length());
00068                         for (int i = 0;i < Val.length();i++) {x (i) = evallog_nn (Val (i)) ;}
00069                         return x -lognc();
00070                 }
00071 
00073                 virtual void pow (double p) {
00074                         bdm_error ("Not implemented");
00075                 }
00076 };
00077 
00078 
00080 class BMEF : public BM
00081 {
00082         protected:
00084                 double frg;
00086                 double last_lognc;
00087         public:
00089                 BMEF (double frg0 = 1.0) : BM (), frg (frg0) {}
00091                 BMEF (const BMEF &B) : BM (B), frg (B.frg), last_lognc (B.last_lognc) {}
00093                 virtual void set_statistics (const BMEF* BM0) {
00094                         bdm_error ("Not implemented");
00095                 }
00096 
00098                 virtual void bayes (const vec &data, const double w) {};
00099                 
00100                 void bayes (const vec &dt);
00101 
00103                 virtual void flatten (const BMEF * B) {
00104                         bdm_error ("Not implemented");
00105                 }
00106 
00107                 BMEF* _copy_ () const {
00108                         bdm_error ("function _copy_ not implemented for this BM");
00109                         return NULL;
00110                 }
00111 };
00112 
00113 template<class sq_T, template <typename> class TEpdf>
00114 class mlnorm;
00115 
00121 template<class sq_T>
00122 class enorm : public eEF
00123 {
00124         protected:
00126                 vec mu;
00128                 sq_T R;
00129         public:
00132 
00133                 enorm () : eEF (), mu (), R () {};
00134                 enorm (const vec &mu, const sq_T &R) {set_parameters (mu, R);}
00135                 void set_parameters (const vec &mu, const sq_T &R);
00136                 void from_setting (const Setting &root);
00137                 void validate() {
00138                         bdm_assert_debug (mu.length() == R.rows(), "parameters mismatch");
00139                         dim = mu.length();
00140                 }
00142 
00145 
00147                 void dupdate (mat &v, double nu = 1.0);
00148 
00149                 vec sample() const;
00150 
00151                 double evallog_nn (const vec &val) const;
00152                 double lognc () const;
00153                 vec mean() const {return mu;}
00154                 vec variance() const {return diag (R.to_mat());}
00155 
00156                 shared_ptr<mpdf> condition ( const RV &rvn ) const;
00157 
00158                 
00159                 
00160                 
00161                 
00162                 void condition ( const RV &rvn, mpdf &target ) const;
00163 
00164                 shared_ptr<epdf> marginal (const RV &rvn ) const;
00165                 void marginal ( const RV &rvn, enorm<sq_T> &target ) const;
00167 
00170 
00171                 vec& _mu() {return mu;}
00172                 const vec& _mu() const {return mu;}
00173                 void set_mu (const vec mu0) { mu = mu0;}
00174                 sq_T& _R() {return R;}
00175                 const sq_T& _R() const {return R;}
00177 
00178 };
00179 UIREGISTER2 (enorm, chmat);
00180 SHAREDPTR2 ( enorm, chmat );
00181 UIREGISTER2 (enorm, ldmat);
00182 SHAREDPTR2 ( enorm, ldmat );
00183 UIREGISTER2 (enorm, fsqmat);
00184 SHAREDPTR2 ( enorm, fsqmat );
00185 
00186 
00193 class egiw : public eEF
00194 {
00195         protected:
00197                 ldmat V;
00199                 double nu;
00201                 int dimx;
00203                 int nPsi;
00204         public:
00207                 egiw() : eEF() {};
00208                 egiw (int dimx0, ldmat V0, double nu0 = -1.0) : eEF() {set_parameters (dimx0, V0, nu0);};
00209 
00210                 void set_parameters (int dimx0, ldmat V0, double nu0 = -1.0) {
00211                         dimx = dimx0;
00212                         nPsi = V0.rows() - dimx;
00213                         dim = dimx * (dimx + nPsi); 
00214 
00215                         V = V0;
00216                         if (nu0 < 0) {
00217                                 nu = 0.1 + nPsi + 2 * dimx + 2; 
00218                                 
00219                         } else {
00220                                 nu = nu0;
00221                         }
00222                 }
00224 
00225                 vec sample() const;
00226                 vec mean() const;
00227                 vec variance() const;
00228 
00230                 vec est_theta() const;
00231 
00233                 ldmat est_theta_cov() const;
00234 
00236                 void mean_mat (mat &M, mat&R) const;
00238                 double evallog_nn (const vec &val) const;
00239                 double lognc () const;
00240                 void pow (double p) {V *= p;nu *= p;};
00241 
00244 
00245                 ldmat& _V() {return V;}
00246                 const ldmat& _V() const {return V;}
00247                 double& _nu()  {return nu;}
00248                 const double& _nu() const {return nu;}
00249                 void from_setting (const Setting &set) {
00250                         UI::get (nu, set, "nu", UI::compulsory);
00251                         UI::get (dimx, set, "dimx", UI::compulsory);
00252                         mat V;
00253                         UI::get (V, set, "V", UI::compulsory);
00254                         set_parameters (dimx, V, nu);
00255                         shared_ptr<RV> rv = UI::build<RV> (set, "rv", UI::compulsory);
00256                         set_rv (*rv);
00257                 }
00259 };
00260 UIREGISTER ( egiw );
00261 SHAREDPTR ( egiw );
00262 
00271 class eDirich: public eEF
00272 {
00273         protected:
00275                 vec beta;
00276         public:
00279 
00280                 eDirich () : eEF () {};
00281                 eDirich (const eDirich &D0) : eEF () {set_parameters (D0.beta);};
00282                 eDirich (const vec &beta0) {set_parameters (beta0);};
00283                 void set_parameters (const vec &beta0) {
00284                         beta = beta0;
00285                         dim = beta.length();
00286                 }
00288 
00289                 vec sample() const {
00290                         bdm_error ("Not implemented");
00291                         return vec();
00292                 }
00293 
00294                 vec mean() const {return beta / sum (beta);};
00295                 vec variance() const {double gamma = sum (beta); return elem_mult (beta, (beta + 1)) / (gamma* (gamma + 1));}
00297                 double evallog_nn (const vec &val) const {
00298                         double tmp; tmp = (beta - 1) * log (val);
00299                         return tmp;
00300                 }
00301 
00302                 double lognc () const {
00303                         double tmp;
00304                         double gam = sum (beta);
00305                         double lgb = 0.0;
00306                         for (int i = 0;i < beta.length();i++) {lgb += lgamma (beta (i));}
00307                         tmp = lgb - lgamma (gam);
00308                         return tmp;
00309                 }
00310 
00312                 vec& _beta()  {return beta;}
00314 };
00315 
00317 class multiBM : public BMEF
00318 {
00319         protected:
00321                 eDirich est;
00323                 vec β
00324         public:
00326                 multiBM () : BMEF (), est (), beta (est._beta()) {
00327                         if (beta.length() > 0) {last_lognc = est.lognc();}
00328                         else{last_lognc = 0.0;}
00329                 }
00331                 multiBM (const multiBM &B) : BMEF (B), est (B.est), beta (est._beta()) {}
00333                 void set_statistics (const BM* mB0) {const multiBM* mB = dynamic_cast<const multiBM*> (mB0); beta = mB->beta;}
00334                 void bayes (const vec &dt) {
00335                         if (frg < 1.0) {beta *= frg;last_lognc = est.lognc();}
00336                         beta += dt;
00337                         if (evalll) {ll = est.lognc() - last_lognc;}
00338                 }
00339                 double logpred (const vec &dt) const {
00340                         eDirich pred (est);
00341                         vec &beta = pred._beta();
00342 
00343                         double lll;
00344                         if (frg < 1.0)
00345                                 {beta *= frg;lll = pred.lognc();}
00346                         else
00347                                 if (evalll) {lll = last_lognc;}
00348                                 else{lll = pred.lognc();}
00349 
00350                         beta += dt;
00351                         return pred.lognc() - lll;
00352                 }
00353                 void flatten (const BMEF* B) {
00354                         const multiBM* E = dynamic_cast<const multiBM*> (B);
00355                         
00356                         const vec &Eb = E->beta;
00357                         beta *= (sum (Eb) / sum (beta));
00358                         if (evalll) {last_lognc = est.lognc();}
00359                 }
00361                 const eDirich& posterior() const {return est;};
00363                 void set_parameters (const vec &beta0) {
00364                         est.set_parameters (beta0);
00365                         if (evalll) {last_lognc = est.lognc();}
00366                 }
00367 };
00368 
00378 class egamma : public eEF
00379 {
00380         protected:
00382                 vec alpha;
00384                 vec beta;
00385         public :
00388                 egamma () : eEF (), alpha (0), beta (0) {};
00389                 egamma (const vec &a, const vec &b) {set_parameters (a, b);};
00390                 void set_parameters (const vec &a, const vec &b) {alpha = a, beta = b;dim = alpha.length();};
00392 
00393                 vec sample() const;
00394                 double evallog (const vec &val) const;
00395                 double lognc () const;
00397                 vec& _alpha() {return alpha;}
00399                 vec& _beta() {return beta;}
00400                 vec mean() const {return elem_div (alpha, beta);}
00401                 vec variance() const {return elem_div (alpha, elem_mult (beta, beta)); }
00402 
00411                 void from_setting (const Setting &set) {
00412                         epdf::from_setting (set); 
00413                         UI::get (alpha, set, "alpha", UI::compulsory);
00414                         UI::get (beta, set, "beta", UI::compulsory);
00415                         validate();
00416                 }
00417                 void validate() {
00418                         bdm_assert_debug (alpha.length() == beta.length(), "parameters do not match");
00419                         dim = alpha.length();
00420                 }
00421 };
00422 UIREGISTER (egamma);
00423 SHAREDPTR ( egamma );
00424 
00441 class eigamma : public egamma
00442 {
00443         protected:
00444         public :
00449 
00450                 vec sample() const {return 1.0 / egamma::sample();};
00452                 vec mean() const {return elem_div (beta, alpha - 1);}
00453                 vec variance() const {vec mea = mean(); return elem_div (elem_mult (mea, mea), alpha - 2);}
00454 };
00455 
00457 
00458 
00459 
00460 
00461 
00462 
00464 
00465 
00466 
00467 
00468 
00469 
00471 
00472 class euni: public epdf
00473 {
00474         protected:
00476                 vec low;
00478                 vec high;
00480                 vec distance;
00482                 double nk;
00484                 double lnk;
00485         public:
00488                 euni () : epdf () {}
00489                 euni (const vec &low0, const vec &high0) {set_parameters (low0, high0);}
00490                 void set_parameters (const vec &low0, const vec &high0) {
00491                         distance = high0 - low0;
00492                         bdm_assert_debug (min (distance) > 0.0, "bad support");
00493                         low = low0;
00494                         high = high0;
00495                         nk = prod (1.0 / distance);
00496                         lnk = log (nk);
00497                         dim = low.length();
00498                 }
00500 
00501                 double evallog (const vec &val) const  {
00502                         if (any (val < low) && any (val > high)) {return inf;}
00503                         else return lnk;
00504                 }
00505                 vec sample() const {
00506                         vec smp (dim);
00507 #pragma omp critical
00508                         UniRNG.sample_vector (dim , smp);
00509                         return low + elem_mult (distance, smp);
00510                 }
00512                 vec mean() const {return (high -low) / 2.0;}
00513                 vec variance() const {return (pow (high, 2) + pow (low, 2) + elem_mult (high, low)) / 3.0;}
00522                 void from_setting (const Setting &set) {
00523                         epdf::from_setting (set); 
00524 
00525                         UI::get (high, set, "high", UI::compulsory);
00526                         UI::get (low, set, "low", UI::compulsory);
00527                 }
00528 };
00529 
00530 
00536 template < class sq_T, template <typename> class TEpdf = enorm >
00537 class mlnorm : public mpdf_internal< TEpdf<sq_T> >
00538 {
00539         protected:
00541                 mat A;
00543                 vec mu_const;
00544 
00545         public:
00548                 mlnorm() : mpdf_internal< TEpdf<sq_T> >() {};
00549                 mlnorm (const mat &A, const vec &mu0, const sq_T &R) : mpdf_internal< TEpdf<sq_T> >() {
00550                         set_parameters (A, mu0, R);
00551                 }
00552 
00554                 void set_parameters (const  mat &A0, const vec &mu0, const sq_T &R0) {
00555                         bdm_assert_debug (A0.rows() == mu0.length(), "mlnorm: A vs. mu mismatch");
00556                         bdm_assert_debug (A0.rows() == R0.rows(), "mlnorm: A vs. R mismatch");
00557 
00558                         this->iepdf.set_parameters (zeros (A0.rows()), R0);
00559                         A = A0;
00560                         mu_const = mu0;
00561                         this->dimc = A0.cols();
00562                 }
00565                 void condition (const vec &cond) {
00566                         this->iepdf._mu() = A * cond + mu_const;
00567 
00568                 }
00569 
00571                 vec& _mu_const() {return mu_const;}
00573                 mat& _A() {return A;}
00575                 mat _R() { return this->iepdf._R().to_mat(); }
00576 
00578                 template<typename sq_M>
00579                 friend std::ostream &operator<< (std::ostream &os,  mlnorm<sq_M, enorm> &ml);
00580 
00581                 void from_setting (const Setting &set) {
00582                         mpdf::from_setting (set);
00583 
00584                         UI::get (A, set, "A", UI::compulsory);
00585                         UI::get (mu_const, set, "const", UI::compulsory);
00586                         mat R0;
00587                         UI::get (R0, set, "R", UI::compulsory);
00588                         set_parameters (A, mu_const, R0);
00589                 };
00590 };
00591 UIREGISTER2 (mlnorm,ldmat);
00592 SHAREDPTR2 ( mlnorm, ldmat );
00593 UIREGISTER2 (mlnorm,fsqmat);
00594 SHAREDPTR2 ( mlnorm, fsqmat );
00595 UIREGISTER2 (mlnorm, chmat);
00596 SHAREDPTR2 ( mlnorm, chmat );
00597 
00599 template<class sq_T>
00600 class mgnorm : public mpdf_internal< enorm< sq_T > >
00601 {
00602         private:
00603 
00604                 shared_ptr<fnc> g;
00605 
00606         public:
00608                 mgnorm() : mpdf_internal<enorm<sq_T> >() { }
00610                 inline void set_parameters (const shared_ptr<fnc> &g0, const sq_T &R0);
00611                 inline void condition (const vec &cond);
00612 
00613 
00641                 void from_setting (const Setting &set) {
00642                         shared_ptr<fnc> g = UI::build<fnc> (set, "g", UI::compulsory);
00643 
00644                         mat R;
00645                         vec dR;
00646                         if (UI::get (dR, set, "dR"))
00647                                 R = diag (dR);
00648                         else
00649                                 UI::get (R, set, "R", UI::compulsory);
00650 
00651                         set_parameters (g, R);
00652                 }
00653 };
00654 
00655 UIREGISTER2 (mgnorm, chmat);
00656 SHAREDPTR2 ( mgnorm, chmat );
00657 
00658 
00666 class mlstudent : public mlnorm<ldmat, enorm>
00667 {
00668         protected:
00670                 ldmat Lambda;
00672                 ldmat &_R;
00674                 ldmat Re;
00675         public:
00676                 mlstudent () : mlnorm<ldmat, enorm> (),
00677                                 Lambda (),      _R (iepdf._R()) {}
00679                 void set_parameters (const mat &A0, const vec &mu0, const ldmat &R0, const ldmat& Lambda0) {
00680                         bdm_assert_debug (A0.rows() == mu0.length(), "mlstudent: A vs. mu mismatch");
00681                         bdm_assert_debug (R0.rows() == A0.rows(), "mlstudent: A vs. R mismatch");
00682 
00683                         iepdf.set_parameters (mu0, R0);
00684                         A = A0;
00685                         mu_const = mu0;
00686                         Re = R0;
00687                         Lambda = Lambda0;
00688                 }
00689                 void condition (const vec &cond) {
00690                         iepdf._mu() = A * cond + mu_const;
00691                         double zeta;
00692                         
00693                         if ( (cond.length() + 1) == Lambda.rows()) {
00694                                 zeta = Lambda.invqform (concat (cond, vec_1 (1.0)));
00695                         } else {
00696                                 zeta = Lambda.invqform (cond);
00697                         }
00698                         _R = Re;
00699                         _R *= (1 + zeta);
00700                 };
00701 
00702 };
00712 class mgamma : public mpdf_internal<egamma>
00713 {
00714         protected:
00715 
00717                 double k;
00718 
00720                 vec &_beta;
00721 
00722         public:
00724                 mgamma() : mpdf_internal<egamma>(), k (0),
00725                                 _beta (iepdf._beta()) {
00726                 }
00727 
00729                 void set_parameters (double k, const vec &beta0);
00730 
00731                 void condition (const vec &val) {_beta = k / val;};
00741                 void from_setting (const Setting &set) {
00742                         mpdf::from_setting (set); 
00743                         vec betatmp; 
00744                         UI::get (betatmp, set, "beta", UI::compulsory);
00745                         UI::get (k, set, "k", UI::compulsory);
00746                         set_parameters (k, betatmp);
00747                 }
00748 };
00749 UIREGISTER (mgamma);
00750 SHAREDPTR (mgamma);
00751 
00761 class migamma : public mpdf_internal<eigamma>
00762 {
00763         protected:
00765                 double k;
00766 
00768                 vec &_alpha;
00769 
00771                 vec &_beta;
00772 
00773         public:
00776                 migamma() : mpdf_internal<eigamma>(),
00777                                 k (0),
00778                                 _alpha (iepdf._alpha()),
00779                                 _beta (iepdf._beta()) {
00780                 }
00781 
00782                 migamma (const migamma &m) : mpdf_internal<eigamma>(),
00783                                 k (0),
00784                                 _alpha (iepdf._alpha()),
00785                                 _beta (iepdf._beta()) {
00786                 }
00788 
00790                 void set_parameters (int len, double k0) {
00791                         k = k0;
00792                         iepdf.set_parameters ( (1.0 / (k*k) + 2.0) *ones (len) , ones (len) );
00793                         dimc = dimension();
00794                 };
00795                 void condition (const vec &val) {
00796                         _beta = elem_mult (val, (_alpha - 1.0));
00797                 };
00798 };
00799 
00800 
00812 class mgamma_fix : public mgamma
00813 {
00814         protected:
00816                 double l;
00818                 vec refl;
00819         public:
00821                 mgamma_fix () : mgamma (), refl () {};
00823                 void set_parameters (double k0 , vec ref0, double l0) {
00824                         mgamma::set_parameters (k0, ref0);
00825                         refl = pow (ref0, 1.0 - l0);l = l0;
00826                         dimc = dimension();
00827                 };
00828 
00829                 void condition (const vec &val) {vec mean = elem_mult (refl, pow (val, l)); _beta = k / mean;};
00830 };
00831 
00832 
00845 class migamma_ref : public migamma
00846 {
00847         protected:
00849                 double l;
00851                 vec refl;
00852         public:
00854                 migamma_ref () : migamma (), refl () {};
00856                 void set_parameters (double k0 , vec ref0, double l0) {
00857                         migamma::set_parameters (ref0.length(), k0);
00858                         refl = pow (ref0, 1.0 - l0);
00859                         l = l0;
00860                         dimc = dimension();
00861                 };
00862 
00863                 void condition (const vec &val) {
00864                         vec mean = elem_mult (refl, pow (val, l));
00865                         migamma::condition (mean);
00866                 };
00867 
00888                 void from_setting (const Setting &set);
00889 
00890                 
00891 };
00892 
00893 
00894 UIREGISTER (migamma_ref);
00895 SHAREDPTR (migamma_ref);
00896 
00906 class elognorm: public enorm<ldmat>
00907 {
00908         public:
00909                 vec sample() const {return exp (enorm<ldmat>::sample());};
00910                 vec mean() const {vec var = enorm<ldmat>::variance();return exp (mu - 0.5*var);};
00911 
00912 };
00913 
00925 class mlognorm : public mpdf_internal<elognorm>
00926 {
00927         protected:
00929                 double sig2;
00930 
00932                 vec μ
00933         public:
00935                 mlognorm() : mpdf_internal<elognorm>(),
00936                                 sig2 (0),
00937                                 mu (iepdf._mu()) {
00938                 }
00939 
00941                 void set_parameters (int size, double k) {
00942                         sig2 = 0.5 * log (k * k + 1);
00943                         iepdf.set_parameters (zeros (size), 2*sig2*eye (size));
00944 
00945                         dimc = size;
00946                 };
00947 
00948                 void condition (const vec &val) {
00949                         mu = log (val) - sig2;
00950                 };
00951 
00970                 void from_setting (const Setting &set);
00971 
00972                 
00973 
00974 };
00975 
00976 UIREGISTER (mlognorm);
00977 SHAREDPTR (mlognorm);
00978 
00982 class eWishartCh : public epdf
00983 {
00984         protected:
00986                 chmat Y;
00988                 int p;
00990                 double delta;
00991         public:
00993                 void set_parameters (const mat &Y0, const double delta0) {Y = chmat (Y0);delta = delta0; p = Y.rows(); dim = p * p; }
00995                 mat sample_mat() const {
00996                         mat X = zeros (p, p);
00997 
00998                         
00999                         for (int i = 0;i < p;i++) {
01000                                 GamRNG.setup (0.5* (delta - i) , 0.5);   
01001 #pragma omp critical
01002                                 X (i, i) = sqrt (GamRNG());
01003                         }
01004                         
01005                         for (int i = 0;i < p;i++) {
01006                                 for (int j = i + 1;j < p;j++) {
01007 #pragma omp critical
01008                                         X (i, j) = NorRNG.sample();
01009                                 }
01010                         }
01011                         return X*Y._Ch();
01012                 }
01013                 vec sample () const {
01014                         return vec (sample_mat()._data(), p*p);
01015                 }
01017                 void setY (const mat &Ch0) {copy_vector (dim, Ch0._data(), Y._Ch()._data());}
01019                 void _setY (const vec &ch0) {copy_vector (dim, ch0._data(), Y._Ch()._data()); }
01021                 const chmat& getY() const {return Y;}
01022 };
01023 
01025 
01027 class eiWishartCh: public epdf
01028 {
01029         protected:
01031                 eWishartCh W;
01033                 int p;
01035                 double delta;
01036         public:
01038                 void set_parameters (const mat &Y0, const double delta0) {
01039                         delta = delta0;
01040                         W.set_parameters (inv (Y0), delta0);
01041                         dim = W.dimension(); p = Y0.rows();
01042                 }
01043                 vec sample() const {mat iCh; iCh = inv (W.sample_mat()); return vec (iCh._data(), dim);}
01045                 void _setY (const vec &y0) {
01046                         mat Ch (p, p);
01047                         mat iCh (p, p);
01048                         copy_vector (dim, y0._data(), Ch._data());
01049 
01050                         iCh = inv (Ch);
01051                         W.setY (iCh);
01052                 }
01053                 virtual double evallog (const vec &val) const {
01054                         chmat X (p);
01055                         const chmat& Y = W.getY();
01056 
01057                         copy_vector (p*p, val._data(), X._Ch()._data());
01058                         chmat iX (p);X.inv (iX);
01059                         
01060 
01061                         mat M = Y.to_mat() * iX.to_mat();
01062 
01063                         double log1 = 0.5 * p * (2 * Y.logdet()) - 0.5 * (delta + p + 1) * (2 * X.logdet()) - 0.5 * trace (M);
01064                         
01065 
01066                         
01067 
01068 
01069 
01070 
01071 
01072 
01073                         return log1;
01074                 };
01075 
01076 };
01077 
01079 class rwiWishartCh : public mpdf_internal<eiWishartCh>
01080 {
01081         protected:
01083                 double sqd;
01085                 vec refl;
01087                 double l;
01089                 int p;
01090 
01091         public:
01092                 rwiWishartCh() : sqd (0), l (0), p (0) {}
01094                 void set_parameters (int p0, double k, vec ref0, double l0) {
01095                         p = p0;
01096                         double delta = 2 / (k * k) + p + 3;
01097                         sqd = sqrt (delta - p - 1);
01098                         l = l0;
01099                         refl = pow (ref0, 1 - l);
01100 
01101                         iepdf.set_parameters (eye (p), delta);
01102                         dimc = iepdf.dimension();
01103                 }
01104                 void condition (const vec &c) {
01105                         vec z = c;
01106                         int ri = 0;
01107                         for (int i = 0;i < p*p;i += (p + 1)) {
01108                                 z (i) = pow (z (i), l) * refl (ri);
01109                                 ri++;
01110                         }
01111 
01112                         iepdf._setY (sqd*z);
01113                 }
01114 };
01115 
01117 enum RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
01123 class eEmp: public epdf
01124 {
01125         protected :
01127                 int n;
01129                 vec w;
01131                 Array<vec> samples;
01132         public:
01135                 eEmp () : epdf (), w (), samples () {};
01137                 eEmp (const eEmp &e) : epdf (e), w (e.w), samples (e.samples) {};
01139 
01141                 void set_statistics (const vec &w0, const epdf &pdf0);
01143                 void set_statistics (const epdf &pdf0 , int n) {set_statistics (ones (n) / n, pdf0);};
01145                 void set_samples (const epdf* pdf0);
01147                 void set_parameters (int n0, bool copy = true) {n = n0; w.set_size (n0, copy);samples.set_size (n0, copy);};
01149                 void set_parameters (const Array<vec> &Av) {
01150                         bdm_assert_debug(Av.size()>0,"Empty samples"); 
01151                         n = Av.size(); 
01152                         epdf::set_parameters(Av(0).length());
01153                         w=1/n*ones(n);
01154                         samples=Av;
01155                 };
01157                 vec& _w()  {return w;};
01159                 const vec& _w() const {return w;};
01161                 Array<vec>& _samples() {return samples;};
01163                 const Array<vec>& _samples() const {return samples;};
01165                 ivec resample (RESAMPLING_METHOD method = SYSTEMATIC);
01166 
01168                 vec sample() const {
01169                         bdm_error ("Not implemented");
01170                         return vec();
01171                 }
01172 
01174                 double evallog (const vec &val) const {
01175                         bdm_error ("Not implemented");
01176                         return 0.0;
01177                 }
01178 
01179                 vec mean() const {
01180                         vec pom = zeros (dim);
01181                         for (int i = 0;i < n;i++) {pom += samples (i) * w (i);}
01182                         return pom;
01183                 }
01184                 vec variance() const {
01185                         vec pom = zeros (dim);
01186                         for (int i = 0;i < n;i++) {pom += pow (samples (i), 2) * w (i);}
01187                         return pom -pow (mean(), 2);
01188                 }
01190                 void qbounds (vec &lb, vec &ub, double perc = 0.95) const {
01191                         
01192                         lb.set_size (dim);
01193                         ub.set_size (dim);
01194                         lb = std::numeric_limits<double>::infinity();
01195                         ub = -std::numeric_limits<double>::infinity();
01196                         int j;
01197                         for (int i = 0;i < n;i++) {
01198                                 for (j = 0;j < dim; j++) {
01199                                         if (samples (i) (j) < lb (j)) {lb (j) = samples (i) (j);}
01200                                         if (samples (i) (j) > ub (j)) {ub (j) = samples (i) (j);}
01201                                 }
01202                         }
01203                 }
01204 };
01205 
01206 
01208 
01209 template<class sq_T>
01210 void enorm<sq_T>::set_parameters (const vec &mu0, const sq_T &R0)
01211 {
01212 
01213         mu = mu0;
01214         R = R0;
01215         validate();
01216 };
01217 
01218 template<class sq_T>
01219 void enorm<sq_T>::from_setting (const Setting &set)
01220 {
01221         epdf::from_setting (set); 
01222 
01223         UI::get (mu, set, "mu", UI::compulsory);
01224         mat Rtmp;
01225         UI::get (Rtmp, set, "R", UI::compulsory);
01226         R = Rtmp; 
01227         validate();
01228 }
01229 
01230 template<class sq_T>
01231 void enorm<sq_T>::dupdate (mat &v, double nu)
01232 {
01233         
01234 };
01235 
01236 
01237 
01238 
01239 
01240 
01241 template<class sq_T>
01242 vec enorm<sq_T>::sample() const
01243 {
01244         vec x (dim);
01245 #pragma omp critical
01246         NorRNG.sample_vector (dim, x);
01247         vec smp = R.sqrt_mult (x);
01248 
01249         smp += mu;
01250         return smp;
01251 };
01252 
01253 
01254 
01255 
01256 
01257 
01258 
01259 
01260 
01261 template<class sq_T>
01262 double enorm<sq_T>::evallog_nn (const vec &val) const
01263 {
01264         
01265         double tmp = -0.5 * (R.invqform (mu - val));
01266         return  tmp;
01267 };
01268 
01269 template<class sq_T>
01270 inline double enorm<sq_T>::lognc () const
01271 {
01272         
01273         double tmp = 0.5 * (R.cols() * 1.83787706640935 + R.logdet());
01274         return tmp;
01275 };
01276 
01277 
01278 
01279 
01280 
01281 
01282 
01283 
01284 
01285 
01286 
01287 
01288 
01289 
01290 
01291 
01292 
01293 
01294 
01295 
01296 
01297 
01298 
01299 
01300 
01301 
01302 
01303 
01304 template<class sq_T>
01305 shared_ptr<epdf> enorm<sq_T>::marginal ( const RV &rvn ) const
01306 {
01307         enorm<sq_T> *tmp = new enorm<sq_T> ();
01308         shared_ptr<epdf> narrow(tmp);
01309         marginal ( rvn, *tmp );
01310         return narrow;
01311 }
01312 
01313 template<class sq_T>
01314 void enorm<sq_T>::marginal ( const RV &rvn, enorm<sq_T> &target ) const
01315 {
01316         bdm_assert_debug (isnamed(), "rv description is not assigned");
01317         ivec irvn = rvn.dataind (rv);
01318 
01319         sq_T Rn (R, irvn);  
01320 
01321         target.set_rv ( rvn );
01322         target.set_parameters (mu (irvn), Rn);
01323 }
01324 
01325 template<class sq_T>
01326 shared_ptr<mpdf> enorm<sq_T>::condition ( const RV &rvn ) const
01327 {
01328         mlnorm<sq_T> *tmp = new mlnorm<sq_T> ();
01329         shared_ptr<mpdf> narrow(tmp);
01330         condition ( rvn, *tmp );
01331         return narrow;
01332 }
01333 
01334 template<class sq_T>
01335 void enorm<sq_T>::condition ( const RV &rvn, mpdf &target ) const
01336 {
01337         typedef mlnorm<sq_T> TMlnorm;
01338 
01339         bdm_assert_debug (isnamed(), "rvs are not assigned");
01340         TMlnorm &uptarget = dynamic_cast<TMlnorm &>(target);
01341 
01342         RV rvc = rv.subt (rvn);
01343         bdm_assert_debug ( (rvc._dsize() + rvn._dsize() == rv._dsize()), "wrong rvn");
01344         
01345         ivec irvn = rvn.dataind (rv);
01346         ivec irvc = rvc.dataind (rv);
01347         ivec perm = concat (irvn , irvc);
01348         sq_T Rn (R, perm);
01349 
01350         
01351         mat S = Rn.to_mat();
01352         
01353         int n = rvn._dsize() - 1;
01354         int end = R.rows() - 1;
01355         mat S11 = S.get (0, n, 0, n);
01356         mat S12 = S.get (0, n , rvn._dsize(), end);
01357         mat S22 = S.get (rvn._dsize(), end, rvn._dsize(), end);
01358 
01359         vec mu1 = mu (irvn);
01360         vec mu2 = mu (irvc);
01361         mat A = S12 * inv (S22);
01362         sq_T R_n (S11 - A *S12.T());
01363 
01364         uptarget.set_rv (rvn);
01365         uptarget.set_rvc (rvc);
01366         uptarget.set_parameters (A, mu1 - A*mu2, R_n);
01367 }
01368 
01371 template<class sq_T>
01372 void mgnorm<sq_T >::set_parameters (const shared_ptr<fnc> &g0, const sq_T &R0) {
01373         g = g0;
01374         this->iepdf.set_parameters (zeros (g->dimension()), R0);
01375 }
01376 
01377 template<class sq_T>
01378 void mgnorm<sq_T >::condition (const vec &cond) {this->iepdf._mu() = g->eval (cond);};
01379 
01381 template<class sq_T>
01382 std::ostream &operator<< (std::ostream &os,  mlnorm<sq_T> &ml)
01383 {
01384         os << "A:" << ml.A << endl;
01385         os << "mu:" << ml.mu_const << endl;
01386         os << "R:" << ml._R() << endl;
01387         return os;
01388 };
01389 
01390 }
01391 #endif //EF_H